In this work, a constant-pressure model capable to simulate the overlap of chambers in rotary internal combustion engines is proposed. It refers as a chamber overlap when two adjacent chambers are in communication through the same port, which could occur in some rotary internal combustion engines. The proposed model is thermodynamic (or zero-dimensional (0D)) in nature and is designed for application in engine simulators that combine one-dimensional (1D) gasdynamic models with thermodynamic ones. Since the equations of the proposed model depend on the flow direction and on the flow regime, a robust and reliable solution strategy is developed. The model is assessed using a two-dimensional (2D) problem and is applied in the simulation of a rotary internal combustion engine. Results for this last problem are compared with other common approaches used in the simulation of rotary engines, showing the importance of effects such as the interaction between overlapping chambers and the dynamics of the flow.

References

1.
Danieli
,
G.
,
1976
, “
A Performance Model of a Wankel Engine, Including the Effects of Burning Rates, Heat Transfer, Leakage and Quenching Compared With Measured Pressure Time Histories
,”
Ph.D. thesis
, Massachusetts Institute of Technology, Cambridge, MA.
2.
Norman
,
T.
,
1983
, “
A Performance Model of a Spark Ignition Wankel Engine: Including the Effects of Crevice Volumes, Gas Leakage, and Heat Transfer
,”
Master's thesis
, Massachusetts Institute of Technology, Cambridge, MA.
3.
Roberts
,
J.
,
1985
, “
Heat Release Estimation and Prediction of Wankel Stratified-Charge Combustion Engine
,”
Master's thesis
, Massachusetts Institute of Technology, Cambridge, MA.
4.
Bartrand
,
T.
, and
Willis
,
E.
,
1990
, “
Performance of a Supercharged Direct-Injection Stratified-Charge Rotary Combustion Engine
,”
Technical Report No. NASA TM–1990-103105
.
5.
Kim
,
K.
,
Chae
,
J.
, and
Chung
,
T.
,
1991
, “
A Performance Simulation for Spark Ignition Wankel Rotary Engine
,”
SAE
Technical Paper No. 912479.
6.
Bartrand
,
T.
, and
Willis
,
E.
,
1993
, “
Rotary Engine Performance Computer Program User's Guide
,” Technical Report No. NASA CR–1993-191192.
7.
Handschuh
,
R.
, and
Owen
,
A.
,
2010
, “
Analysis of Apex Seal Friction Power Loss in Rotary Engines
,” NASA Glenn Research Center, Cleveland, OH,
Technical Report No. TM–2010-216353
.
8.
Tartakovsky
,
L.
,
Baibikov
,
V.
,
Gutman
,
M.
, and
Veinblat
,
M.
,
2012
, “
Simulation of Wankel Engine Performance Using Commercial Software for Piston Engines
,”
SAE
Technical Paper No. 2012-32-0098.
9.
Yamamoto
,
K.
,
1981
,
Rotary Engine
,
Sankaido
,
Tokyo, Japan
.
10.
Toth
,
J.
,
2004
, “
Motor Rotativo de Combustión a Volumen Constante (MRCVC)
,” Patent Res. No. AR004806B1, Rec. No. P 19960105411.
11.
Toth
,
J.
,
Di Nezio
,
J.
,
Staniscia
,
C.
, and
López
,
E.
,
2000
, “
Ventajas mecánicas y termodinámicas de un nuevo motor rotativo
,” 9 
Congreso Chileno de Ingeniería Mecánica
, pp.
1
6
.
12.
López
,
E.
,
2009
, “
Methodologies for the Numerical Simulation of Fluid Flow in Internal Combustion Engines
,” Ph.D. thesis, Facultad de Ingeniería y Ciencias Hídricas, Universidad Nacional del Litoral, Santa Fe, Argentina.
13.
Benson
,
R.
,
1982
,
The Thermodynamics and Gas Dynamics of Internal-Combustion Engines
, Vol.
1
,
Clarendon Press
,
Oxford, UK
.
14.
Alessandri
,
M.
,
2000
, “
Simulazione della fase di ricambio della carica in un motore benzina ad iniezione diretta
,” Master's thesis, Dipartamento di Ingegneria Meccanica, Facolta’ di Ingegneria, Universita' degli Studi di Roma Tor Vergata, Rome, Italy.
15.
López
,
E.
, and
Nigro
,
N.
,
2010
, “
Validation of a 0D/1D Computational Code for the Design of Several Kind of Internal Combustion Engines
,”
Lat.-Am. Appl. Res.
,
40
(
2
), pp.
175
184
.
16.
Hirsch
,
C.
,
1990
,
Numerical Computation of Internal and External Flows, Volume 2: Computational Methods for Inviscid and Viscous Flows
,
Wiley
,
Chichester, UK
.
17.
Papalambros
,
P.
, and
Wilde
,
D.
,
2000
,
Principles of Optimal Design: Modeling and Computation
, 2nd ed. ,
Cambridge University Press
,
Cambridge, UK.
18.
Nigro
,
N.
,
López
,
E.
, and
Gimenez
,
J.
,
2010–2016
, “
ICESym. An Internal Combustion Engine Simulator
.”
19.
Storti
,
M.
,
Nigro
,
N.
,
Paz
,
R.
,
Dalcín
,
L.
,
López
,
E.
,
Battaglia
,
L.
, and
Ríos Rodríguez
,
G.
,
1999–2016
, “
PETSc-FEM. A General Purpose, Parallel, Multi-Physics FEM Program
.”
20.
Harten
,
A.
,
1983
, “
A High Resolution Scheme for the Computation of Weak Solutions of Hyperbolic Conservation Laws
,”
J. Comput. Phys.
,
49
(
3
), pp.
357
393
.
21.
López
,
E.
, and
Nigro
,
N.
,
2011
, “
Computational Simulation of In-Cylinder Flows in Internal Combustion Engines by Means of the Coupling of Zero-/One-Dimensional and Multidimensional Codes
,”
Mecánica Computacional
, Vol.
30
, pp.
403
423
.
22.
Heywood
,
J.
,
1988
,
Internal Combustion Engine Fundamentals
,
McGraw-Hill
, New York.
23.
Ramos
,
J.
,
1989
,
Internal Combustion Engine Modeling
,
Hemisphere
, New York.
You do not currently have access to this content.