One of the major problems facing the users of aircraft engines and stationary gas turbines in dusty and dirty environments is erosion, causing engine performance deterioration. Thermal barrier coatings (TBCs) are often applied on metal engine components as combustor heat shields or tiles as well as turbine blades allowing enhanced operating temperatures and resulting in increased thermal efficiency of the turbine and also reduced fuel consumption and gaseous emission. Erosive attack by airborne dust or fly ash, coarse particles causes coating degradation resulting in lifting issues of engine components. In the present study, an erosion test facility was used to simulate the mechanisms of coating degradation expected in gas turbines in a more realistic way closer to real engine conditions. A loading situation combining thermal gradient cycling and erosive media was used. The experiments have been performed with an arc heated plasma wind tunnel (PWT total enthalpy up to 20 MJ/kg), which is available at the Institute for Thermodynamics at the University of the Federal Armed Forces in Munich, Germany. The experimental setup and the integration of the air jet erosion test rig into the existing PWT will be elucidated. Different plasma sprayed TBC materials, including the standard TBC material yttria-stabilized zirconia (YSZ), were investigated regarding their erosion resistance. For validation and verification, samples of nickel-based Mar-M 247 and INCO 718 alloys have been used.

References

1.
Rhys-Jones
,
T.
, and
Toriz
,
F.
,
1989
, “
Thermal Barrier Coatings for Turbine Application in Aero Engines
,”
High Temp. Technol.
,
7
(
2
), pp.
73
81
.
2.
Bruce
,
R.
,
1998
, “
Development of 1232 °C (2250°F) Erosion and Impact Tests for Thermal Barrier Coatings
,”
Tribol. Trans.
,
41
(
4
), pp.
399
410
.10.1080/10402009808983765
3.
Vasilevskii
,
E.
,
Osiptsov
,
A.
,
Chirikhin
,
A.
, and
Yakovleva
,
L.
,
2001
, “
Heat Exchange on the Front Surface of a Blunt Body in a High-Speed Flow Containing Low-Inertia Particles
,”
J. Eng. Phys. Thermophys.
,
74
(
6
), pp.
1399
1411
.10.1023/A:1013996332270
4.
Tabakoff
,
W.
,
1995
, “
High-Temperature Erosion Resistance of Coatings for Use in Turbomachinery
,”
Wear
,
186–187
(
1
), pp.
224
229
.10.1016/0043-1648(95)07180-6
5.
Nicholls
,
J.
,
Deakin
,
M.
, and
Rickerby
,
D.
,
1995
, “
A Comparison Between the Erosion Behaviour of Thermal Spray and Electron Beam Physical Vapour Deposition Thermal Barrier Coatings
,”
Wear
,
233–235
, pp.
352
361
.10.1016/S0043-1648(99)00214-8
6.
Thompson
,
J. A.
, and
Clyne
,
T. W.
,
1999
, “
The Stiffness of Plasma Sprayed Zirconia Top Coats in TBCs
,”
United Thermal Spray Conference
, Dusseldorf, Germany, Mar. 17–19, pp.
835
840
.
7.
Wiederhorn
,
S. M.
, and
Hockey
,
B. J.
,
1983
, “
Effect of Material Parameters on the Erosion Resistance of Brittle Materials
,”
J. Mater. Sci.
,
18
(
3
), pp.
766
780
.10.1007/BF00745575
8.
Eaton
,
H.
, and
Novak
,
R.
,
1989
, “
Erosion of Plasma Sprayed Porous Zirconia Under Differing Conditions
,”
Symposium on Corrosion and Particle Erosion at High Temperatures
, Las Vegas, NV, Feb. 27–Mar. 3.
9.
Janos
,
B.
,
Lugscheider
,
E.
, and
Remer
,
P.
,
1999
, “
Effect of Thermal Aging on the Erosion Resistance of Air Plasma Sprayed Zirconia Thermal Barrier Coating
,”
Surf. Coat. Technol.
,
113
(
3
), pp.
278
285
.10.1016/S0257-8972(99)00002-X
10.
Langkau
,
R.
,
1981
, “
Eine neue Forschungsanlage zur Untersuchung chemischer Reaktionen in Gasströmungen hoher Enthalpy
,” Ph.D. thesis, University of the German Federal Armed Forces, Munich, Germany.
11.
Kirschner
,
M.
,
Sander
,
T.
,
Mundt
,
Ch.
,
2013
, “
Laser Induced Fluorescence of Nitric Oxide A-X(0,0) in High Enthalpy Flow
,”
Lasermethoden in der Strömungsmesstechnik
, Vol.
21
,
C.
Kähler
and
E. R.
Hain
, eds.,
GALA e.V. German Association for Laser Anemometry
, Munich, Germany, pp.
11.1
11.8
.
12.
Hatzl
,
S.
,
Sander
,
T.
, and
Mundt
,
Ch.
,
2011
, “
One-Dimensional Measurements of High Enthalpy Flow Temperature Using Spontaneous Raman Spectroscopy
,”
17th AIAA International Space Planes and Hypersonics Systems and Technologies Conference
, San Francisco, CA, Apr. 11–14, Paper No. 2011-2212, pp.
130
138
.10.2514/6.2011-2212
13.
Miller
,
R. A.
,
Kuczmarski
,
M. A.
, and
Zhu
,
D.
,
2010
, “
Burner Rig With an Unattached Duct for Evaluating the Erosion Resistance of Thermal Barrier Coatings
,” NASA Glenn Research Center, Cleveland, OH, Technical Memoriam No. TM-2011-217008.
14.
Tabakoff
,
W.
,
1999
, “
Erosion Resistance of Superalloys and Different Coatings Exposed to Particulate Flows at High Temperature
,”
Surf. Coat. Technol.
,
120-121
, pp.
542
547
.10.1016/S0257-8972(99)00434-X
15.
Lindsley
,
B.
,
Stein
,
K.
, and
Marder
,
A.
,
1995
, “
The Design of a High-Temperature Erosion Apparatus for Studying Solid Particle Impact
,”
Meas. Sci. Technol.
,
6
(
8
), pp.
1169
1174
.10.1088/0957-0233/6/8/012
16.
Tabakoff
,
W.
,
1991
, “
Measurements of Particles Rebound Characteristics on Materials Used in Gas Turbines
,”
Jet Propul.
,
7
(
5
), pp.
805
813
.10.2514/3.23395
17.
ASTM
,
2007
, “Standard Test Method for Conducting Erosion Tests by Solid Particle Impingement Using Gas Jets,”
ASTM International
,
West Conshohocken, PA
, Standard No. G76-07.10.1520/G0076-07
18.
Ceram,
2014
, “
Ceram Ingenieurkeramik, “Ceram GmbH, Albbruck-Birndorf, Germany
,” http://www.ceram-gmbh.de/e_index.htm
19.
Hatzl
,
S.
,
Kirschner
,
M.
,
Lippig
,
V.
,
Sander
,
T.
,
Mundt
,
Ch.
, and
Pfitzner
,
M.
,
2014
, “
Direct Measurements of Infrared Normal Spectral Emissivity of Solid Materials for High-Temperature Applications
,”
Int. J. Thermophys.
,
34
(
11
), pp.
2089
2101
.10.1007/s10765-013-1531-y
20.
Bach
,
F. W.
, and
Duda
,
T.
,
2000
,
Moderne Beschichtungsverfahren
,
Wiley-VCH Verlag
, Weinheim, Germany.
21.
Richard
,
W.
,
1998
, “
Multiphase Flow
,”
The Handbook of Fluid Dynamics
, Idaho National Laboratory, Idaho Falls, ID. Chap. 18.
22.
Kirschner
,
M.
, and
Mundt
,
Ch.
,
2011
, “
Particle Tracking Velocimetry in einem Hochenthalpiefreistrahl
,”
15th DLR STAB-Workshop, Göttingen
, Germany, Nov. 9–10.
23.
Eriksson
,
R.
,
2011
,
High-Temperature Degradation of Plasma Sprayed Thermal Barrier Coating Systems
,
Linköping University
,
Linköping, Sweden
.
24.
Chen
,
X.
,
He
,
M.
,
Spitsberg
,
I.
,
Fleck
,
N.
,
Hutchinson
,
J.
, and
Evans
,
A.
,
2004
, “
Mechanisms Governing the High Temperature Erosion of Thermal Barrier Coating
,”
Wear
,
256
(7–8), pp.
735
746
.10.1016/S0043-1648(03)00446-0
25.
Handschuh
,
R.
,
1984
, “
High-Temperature Erosion of Plasma-Sprayed, Yttria-Stabilized Zirconia in a Simulated Turbine Environment
,” NASA Lewis Research Center, Cleveland, OH, Technical Paper No. 2406.
You do not currently have access to this content.