This paper reports on the flow (centrifugal = radially outward, centripetal = radially inward) through rotating radial orifices with and without preswirl in the flow approaching the orifice in the outer annulus. The aerodynamical behavior of flow through radial rotating holes is different from the one through axial and stationary holes due to the presence of centrifugal and Coriolis forces. To investigate the flow phenomena and the discharge coefficient of these orifices in detail, an existing test rig containing two independently rotating shafts (corotating and counter rotating) was used. To simulate conditions of real gas turbines, where the flow is often influenced by upstream components, various preswirl angles were used in the test rig. Measurements of the flow discharge coefficient in both flow directions through the orifices (centripetal and centrifugal), with and without preswirl generation in the outer annulus, are presented at various flow conditions (pressure ratios across orifices, Mach numbers of approaching flow) and for different geometric parameters (length to diameter ratios, sharp/rounded inlet edges). Flow effects that occur with preswirled flow are clarified. A comparison of the experimental data, for both flow directions, shows a similar behavior of the discharge coefficients with increasing shaft speeds. To supplement the experimental data and to better understand the experimental findings, numerical simulations were performed, which show a good agreement with the experimental results. Furthermore, an optimization model with complete automatic grid generation, computational fluid dynamics (CFD) simulation, and postprocessing, was built to enable large parametric studies, e.g., grid independence of the solutions.
Skip Nav Destination
Article navigation
March 2015
Research-Article
A Comprehensive Investigation of Preswirled Flow Through Rotating Radial Holes
Daniel Riedmüller,
Daniel Riedmüller
Institut für Thermodynamik LRT-10,
Fakultät für Luft- und Raumfahrttechnik,
e-mail: daniel.riedmueller@unibw.de
Fakultät für Luft- und Raumfahrttechnik,
Universität der Bundeswehr München
,Neubiberg 85577
, Germany
e-mail: daniel.riedmueller@unibw.de
Search for other works by this author on:
Jan Sousek,
Jan Sousek
Institut für Thermodynamik LRT-10,
Fakultät für Luft- und Raumfahrttechnik,
e-mail: sousek.jan@seznam.cz
Fakultät für Luft- und Raumfahrttechnik,
Universität der Bundeswehr München
,Neubiberg 85577
, Germany
e-mail: sousek.jan@seznam.cz
Search for other works by this author on:
Michael Pfitzner
Michael Pfitzner
Institut für Thermodynamik LRT-10,
Fakultät für Luft- und Raumfahrttechnik,
e-mail: michael.pfitzner@unibw.de
Fakultät für Luft- und Raumfahrttechnik,
Universität der Bundeswehr München
,Neubiberg 85577
, Germany
e-mail: michael.pfitzner@unibw.de
Search for other works by this author on:
Daniel Riedmüller
Institut für Thermodynamik LRT-10,
Fakultät für Luft- und Raumfahrttechnik,
e-mail: daniel.riedmueller@unibw.de
Fakultät für Luft- und Raumfahrttechnik,
Universität der Bundeswehr München
,Neubiberg 85577
, Germany
e-mail: daniel.riedmueller@unibw.de
Jan Sousek
Institut für Thermodynamik LRT-10,
Fakultät für Luft- und Raumfahrttechnik,
e-mail: sousek.jan@seznam.cz
Fakultät für Luft- und Raumfahrttechnik,
Universität der Bundeswehr München
,Neubiberg 85577
, Germany
e-mail: sousek.jan@seznam.cz
Michael Pfitzner
Institut für Thermodynamik LRT-10,
Fakultät für Luft- und Raumfahrttechnik,
e-mail: michael.pfitzner@unibw.de
Fakultät für Luft- und Raumfahrttechnik,
Universität der Bundeswehr München
,Neubiberg 85577
, Germany
e-mail: michael.pfitzner@unibw.de
Contributed by the Combustion and Fuels Committee of ASME for publication in the JOURNAL OF ENGINEERING FOR GAS TURBINES AND POWER. Manuscript received July 11, 2014; final manuscript received July 18, 2014; published online October 7, 2014. Editor: David Wisler.
J. Eng. Gas Turbines Power. Mar 2015, 137(3): 031504 (13 pages)
Published Online: October 7, 2014
Article history
Received:
July 11, 2014
Revision Received:
July 18, 2014
Citation
Riedmüller, D., Sousek, J., and Pfitzner, M. (October 7, 2014). "A Comprehensive Investigation of Preswirled Flow Through Rotating Radial Holes." ASME. J. Eng. Gas Turbines Power. March 2015; 137(3): 031504. https://doi.org/10.1115/1.4028375
Download citation file:
Get Email Alerts
Cited By
Foreign Object Damage of Environmental Barrier Coatings Subjected to CMAS Attack
J. Eng. Gas Turbines Power
Generative deep learning on images of thermo-mechanical simulation results
J. Eng. Gas Turbines Power
Related Articles
Internal Flow Losses: A Fresh Look at Old Concepts
J. Fluids Eng (May,2011)
Performance and Internal Flow Characteristics of a Very Low Specific Speed Centrifugal Pump
J. Fluids Eng (March,2006)
Optically
Based Rapid Heat Transfer Measurements in Complex Internal
Flows
J. Heat Transfer (December,2007)
Nonlinear Breakup Model for a Liquid Sheet Emanating From a Pressure-Swirl Atomizer
J. Eng. Gas Turbines Power (October,2007)
Related Proceedings Papers
Related Chapters
Antilock-Braking System Using Fuzzy Logic
International Conference on Mechanical and Electrical Technology, 3rd, (ICMET-China 2011), Volumes 1–3
Boundary Layer Analysis
Centrifugal Compressors: A Strategy for Aerodynamic Design and Analysis
Application of Conjugate Heat Transfer Models in External and Internal Flows
Applications of Mathematical Heat Transfer and Fluid Flow Models in Engineering and Medicine