This paper reports on the flow (centrifugal = radially outward, centripetal = radially inward) through rotating radial orifices with and without preswirl in the flow approaching the orifice in the outer annulus. The aerodynamical behavior of flow through radial rotating holes is different from the one through axial and stationary holes due to the presence of centrifugal and Coriolis forces. To investigate the flow phenomena and the discharge coefficient of these orifices in detail, an existing test rig containing two independently rotating shafts (corotating and counter rotating) was used. To simulate conditions of real gas turbines, where the flow is often influenced by upstream components, various preswirl angles were used in the test rig. Measurements of the flow discharge coefficient in both flow directions through the orifices (centripetal and centrifugal), with and without preswirl generation in the outer annulus, are presented at various flow conditions (pressure ratios across orifices, Mach numbers of approaching flow) and for different geometric parameters (length to diameter ratios, sharp/rounded inlet edges). Flow effects that occur with preswirled flow are clarified. A comparison of the experimental data, for both flow directions, shows a similar behavior of the discharge coefficients with increasing shaft speeds. To supplement the experimental data and to better understand the experimental findings, numerical simulations were performed, which show a good agreement with the experimental results. Furthermore, an optimization model with complete automatic grid generation, computational fluid dynamics (CFD) simulation, and postprocessing, was built to enable large parametric studies, e.g., grid independence of the solutions.

References

1.
Rohde
,
J.
,
Richards
,
H.
, and
Metger
,
G.
,
1969
, “
Discharge Coefficients for Thick Plate Orifices With Approach Flow Perpendicular and Inclined to the Orifice Axis
,” NASA Lewis Research Center, Cleveland, OH, Report No. NASA TN D-5467.
2.
Wittig
,
S.
,
Jakoby
,
R.
, and
Weißert
,
I.
,
1996
, “
Experimental and Numerical Study of Orifice Discharge Coefficients in High-Speed Rotating Disks
,”
ASME J. Turbomach.
,
118
(
2
), pp.
400
407
.10.1115/1.2836655
3.
Dittmann
,
M.
,
Geis
,
T.
,
Schramm
,
V.
,
Kim
,
S.
, and
Wittig
,
S.
,
2001
, “
Discharge Coefficients of a Preswirl System in Secondary Air Systems
,”
ASME J. Turbomach.
,
124
(
1
), pp.
119
124
.10.1115/1.1413474
4.
Dittmann
,
M.
,
Dullenkopf
,
K.
, and
Wittig
,
S.
,
2003
, “
Discharge Coefficients of Rotating Short Orifices With Radiused and Chamfered Inlets
,”
ASME
Paper No. GT2003-38314.10.1115/GT2003-38314
5.
Maeng
,
D. J.
,
Lee
,
J. S.
,
Jakoby
,
R.
,
Kim
,
S.
, and
Wittig
,
S.
,
1999
, “
Characteristics of Discharge Coefficient in a Rotating Disk System
,”
ASME J. Eng. Gas Turbines Power
,
121
(
4
), pp.
663
669
.10.1115/1.2818523
6.
Weißert
,
I.
,
1996
, “
Numerische Simulation dreidimensionaler Strömungen in Sekundärluftsystemen von Gasturbinen untere besonderer Berücksichtigung der Rotation
,” Ph.D. thesis, Universität Karlsruhe, Karlsruhe, Germany.
7.
Alexiou
,
A.
,
Hills
,
N. J.
,
Long
,
C. A.
,
Turner
,
A. B.
,
Wong
,
L.-S.
, and
Millward
,
J.
,
2000
, “
Discharge Coefficients for Flow Through Holes Normal to a Rotating Shaft
,”
Int. J. Heat Fluid Flow
,
21
(
6
), pp.
701
709
.10.1016/S0142-727X(00)00068-0
8.
Idris
,
A.
,
Pullen
,
K. R.
, and
Read
,
R.
,
2004
, “
The Influence of Incidence Angle on the Discharge Coefficient for Rotating Radial Orifices
,”
ASME
Paper No. GT2004-5323710.1115/GT2004-53237.
9.
Sousek
,
J.
,
Niehuis
,
R.
, and
Pfitzner
,
M.
,
2010
, “
Experimental Study of Discharge Coefficients Of Radial Orifices in High-Speed Rotating Shafts
,”
ASME
Paper No. GT2010-22691.10.1115/GT2010-22691
10.
Idris
,
M. A.
, and
Pullen
,
K. R.
,
2006
, “
The Effect of Pre-Swirl on the Discharge Coefficient of Rotating Axial Orifices
,”
International Conference on Energy and Environment
, Universiti Tenaga Nasional, Bangi, Selangor, Malaysia, Aug. 28–30, pp. 82–87.
11.
Sousek
,
J.
,
Riedmüller
,
D.
, and
Pfitzner
,
M.
,
2012
, “
Experimental and Numerical Investigation of the Flow at Radial Holes in High-Speed Rotating Shafts
,”
ASME
Paper No. GT2012-68209.10.1115/GT2012-68209
12.
Kline
,
S. J.
, and
McClintock
,
F. A.
,
1953
, “
Describing Uncertainties in Single-Sample Experiments
,”
ASME J. Mech. Eng.
,
75
, pp.
3
8
.
13.
Sousek
,
J.
,
2011
, “
Untersuchungen an Strömungen durch rotierende Radialbohrungen
,” Ph.D. thesis, Universität der Bundeswehr München, Munich, Germany.
14.
Zimmermann
,
H.
,
Kutz
,
J.
, and
Fisher
,
R.
,
1998
, “
Air System Correlations Part 2: Rotating Holes and Two Phase Flow
,”
International Gas Turbine & Aeroengine Congress and Exhibition
, Stockholm, Sweden, June 2–5,
ASME
Paper No. 98-GT-207.
15.
Lichtarowicz
,
A.
,
Duggins
,
R. K.
, and
Markland
,
E.
,
1965
, “
Discharge Coefficient for Incompressible Non-Cavitating Flow Through Long Orifices
,”
J. Mech. Eng. Sci.
,
7
(
2
), pp.
210
219
.10.1243/JMES_JOUR_1965_007_029_02
You do not currently have access to this content.