Humidified gas turbines using steam generated from excess heat feature increased cycle efficiencies. Injecting the steam into the combustor reduces NOx emissions, flame temperatures, and burning velocities, promising a clean and stable combustion of highly reactive fuels such as hydrogen or hydrogen–methane blends. This study presents laminar burning velocities for methane and hydrogen-enriched methane (10 mol. % and 50 mol. %) at steam contents up to 30% of the air mass flow. Experiments were conducted on prismatic Bunsen flames stabilized on a slot-burner, employing OH planar laser-induced fluorescence (OH-PLIF) as an indicator for flame front areas. The experimental burning velocities agree well with results from one-dimensional simulations using the GRI 3.0 mechanism. Burning velocities reduce nonlinearly with ascending steam mole fractions and more rapid compared to simulations using “virtual H2O” stemming from a chemical influence on reactions. Hydrogen enrichment increases burning velocities, extending the flammability range toward leaner and more humid mixtures. Additionally, measured NOx and CO emissions reveal a strong reduction in NOx emissions for increasing steam dilution rates, whereas CO curves are shifted toward higher equivalence ratios.

References

1.
Jonsson
,
M.
, and
Yan
,
J.
,
2005
, “
Humidified Gas Turbines—A Review of Proposed and Implemented Cycles
,”
Energy
,
30
(
7
), pp.
1013
1078
.10.1016/j.energy.2004.08.005
2.
Babkin
,
V. S.
, and
V'yun
,
A. V.
,
1971
, “
Effect of Water Vapor on the Normal Burning Velocity of a Methane–Air Mixture at High Pressures
,”
Combust. Explos. Shock Waves
,
7
(
3
), pp.
339
341
.10.1007/BF00742820
3.
Koroll
,
G. W.
, and
Mulpuru
,
S. R.
,
1986
, “
The Effect of Dilution With Steam on the Burning Velocity and Structure of Premixed Hydrogen Flames
,”
Symp. Combust.
,
21
(
1
), pp.
1811
1819
.10.1016/S0082-0784(88)80415-6
4.
Mazas
,
A. N.
,
Fiorina
,
B.
,
Lacoste
,
D. A.
, and
Schuller
,
T.
,
2011
, “
Effects of Water Vapor Addition on the Laminar Burning Velocity of Oxygen-Enriched Methane Flames
,”
Combust. Flame
,
158
(
12
), pp.
2428
2440
.10.1016/j.combustflame.2011.05.014
5.
Göke
,
S.
, and
Paschereit
,
C. O.
,
2013
, “
Influence of Steam Dilution on Nitrogen Oxide Formation in Premixed Methane/Hydrogen Flames
,”
J. Propul. Power
,
29
(
1
), pp.
249
260
.10.2514/1.B34577
6.
Krüger
,
O.
,
Duwig
,
C.
,
Terhaar
,
S.
, and
Paschereit
,
C. O.
,
2013
, “
Large Eddy Simulations of Hydrogen Oxidation at Ultra-Wet Conditions in a Model Gas Turbine Combustor Applying Detailed Chemistry
,”
ASME J. Eng. Gas Turbines Power
,
135
(
2
), p.
021501
.10.1115/1.4007718
7.
Vagelopoulos
,
C. M.
, and
Egolfopoulos
,
F. N.
,
1998
, “
Direct Experimental Determination of Laminar Flame Speeds
,”
Proc. Combust. Inst.
,
27
(
1
), pp.
513
519
.10.1016/S0082-0784(98)80441-4
8.
Gu
,
X.
,
Haq
,
M.
,
Lawes
,
M.
, and
Woolley
,
R.
,
2000
, “
Laminar Burning Velocity and Markstein Lengths of Methane–Air Mixtures
,”
Combust. Flame
,
121
(
1–2
), pp.
41
58
.10.1016/S0010-2180(99)00142-X
9.
Rozenchan
,
G.
,
Zhu
,
D.
,
Law
,
C.
, and
Tse
,
S.
,
2002
, “
Outward Propagation, Burning Velocities, and Chemical Effects of Methane Flames Up to 60 ATM
,”
Combust. Flame
,
29
(
2
), pp.
1461
1470
.10.1016/S1540-7489(02)80179-1
10.
Bosschaart
,
K. J.
, and
Goey
,
L. P. H. D.
,
2004
, “
The Laminar Burning Velocity of Flames Propagating in Mixtures of Hydrocarbons and Air Measured With the Heat Flux Method
,”
Combust. Flame
,
136
(
3
), pp.
261
269
.10.1016/j.combustflame.2003.10.005
11.
Rallis
,
C.
, and
Garforth
,
A.
,
1980
, “
The Determination of Laminar Burning Velocity
,”
Prog. Energy Combust. Sci.
,
6
(
4
), pp.
303
329
.10.1016/0360-1285(80)90008-8
12.
Selle
,
L.
,
Poinsot
,
T.
, and
Ferret
,
B.
,
2011
, “
Experimental and Numerical Study of the Accuracy of Flame-Speed Measurements for Methane/Air Combustion in a Slot Burner
,”
Combust. Flame
,
158
(
1
), pp.
146
154
.10.1016/j.combustflame.2010.08.003
13.
Halter
,
F.
,
Chauveau
,
C.
,
Djebaïli-Chaumeix
,
N.
, and
Gökalp
,
I.
,
2005
, “
Characterization of the Effects of Pressure and Hydrogen Concentration on Laminar Burning Velocities of Methane–Hydrogen–Air Mixtures
,”
Proc. Combust. Inst.
,
30
(
1
), pp.
201
208
.10.1016/j.proci.2004.08.195
14.
Ilbas
,
M.
,
Crayford
,
A.
,
Yilmaz
,
I.
,
Bowen
,
P.
, and
Syred
,
N.
,
2006
, “
Laminar-Burning Velocities of Hydrogen–Air and Hydrogen–Methane–Air Mixtures: An Experimental Study
,”
Int. J. Hydrogen Energy
,
31
(
12
), pp.
1768
1779
.10.1016/j.ijhydene.2005.12.007
15.
Hu
,
E.
,
Huang
,
Z.
,
He
,
J.
,
Jin
,
C.
, and
Zheng
,
J.
,
2009
, “
Experimental and Numerical Study on Laminar Burning Characteristics of Premixed Methane–Hydrogen–Air Flames
,”
Int. J. Hydrogen Energy
,
34
(
11
), pp.
4876
4888
.10.1016/j.ijhydene.2009.03.058
16.
Wang
,
J.
,
Huang
,
Z.
,
Tang
,
C.
,
Miao
,
H.
, and
Wang
,
X.
,
2009
, “
Numerical Study of the Effect of Hydrogen Addition on Methane–Air Mixtures Combustion
,”
Int. J. Hydrogen Energy
,
34
(
2
), pp.
1084
1096
.10.1016/j.ijhydene.2008.11.010
17.
Bougrine
,
S.
,
Richard
,
S.
,
Nicolle
,
A.
, and
Veynante
,
D.
,
2011
, “
Numerical Study of Laminar Flame Properties of Diluted Methane–Hydrogen–Air Flames at High Pressure and Temperature Using Detailed Chemistry
,”
Int. J. Hydrogen Energy
,
36
(
18
), pp.
12035
12047
.10.1016/j.ijhydene.2011.06.053
18.
Boushaki
,
T.
,
Dhué
,
Y.
,
Selle
,
L.
,
Ferret
,
B.
, and
Poinsot
,
T.
,
2012
, “
Effects of Hydrogen and Steam Addition on Laminar Burning Velocity of Methane–Air Premixed Flame: Experimental and Numerical Analysis
,”
Int. J. Hydrogen Energy
,
37
(
11
), pp.
9412
9422
.10.1016/j.ijhydene.2012.03.037
19.
Le Cong
,
T.
, and
Dagaut
,
P.
,
2009
, “
Experimental and Detailed Modeling Study of the Effect of Water Vapor on the Kinetics of Combustion of Hydrogen and Natural Gas, Impact on NOx
,”
Energy Fuels
,
23
(
2
), pp.
725
734
.10.1021/ef800832q
20.
Galmiche
,
B.
,
Halter
,
F.
,
Foucher
,
F.
, and
Dagaut
,
P.
,
2011
, “
Effects of Dilution on Laminar Burning Velocity of Premixed Methane/Air Flames
,”
Energy Fuels
,
25
(
3
), pp.
948
954
.10.1021/ef101482d
21.
Albin
,
E.
,
Nawroth
,
H.
,
Göke
,
S.
,
D'Angelo
,
Y.
, and
Paschereit
,
C. O.
,
2012
, “
Experimental Investigation of Burning Velocities of Ultra-Wet Methane–Air–Steam Mixtures
,”
Fuel Process. Technol.
,
107
, pp.
27
35
.10.1016/j.fuproc.2012.06.027
22.
Göckeler
,
K.
,
Albin
,
E.
,
Krüger
,
O.
, and
Paschereit
,
C. O.
,
2013
, “
Burning Velocities of Hydrogen–Methane–Air Mixtures at Highly Steam-Diluted Conditions
,”
4th International Conference Jets
, Wakes Separated Flows (ICJWSF-2013), Nagoya, Japan, Sept. 17–21.
23.
Smith
,
G. P.
,
Golden
,
D. M.
,
Frenklach
,
M.
,
Moriarty
,
N. W.
,
Eiteneer
,
B.
,
Goldenberg
,
M.
,
Bowman
,
C. T.
,
Hanson
,
R. K.
,
Song
,
S.
,
Gardiner
,
W. C. J.
,
Lissianski
,
V. V.
, and
Qin
,
Z.
,
2000
, “
GRI 3.0
,” Gas Research Institute, Chicago, IL, http://www.me.berkeley.edu/gri_mech/
24.
Biagioli
,
F.
, and
Güthe
,
F.
,
2007
, “
Effect of Pressure and Fuel–Air Unmixedness on NOx Emissions From Industrial Gas Turbine Burners
,”
Combust. Flame
,
151
(
1–2
), pp.
274
288
.10.1016/j.combustflame.2007.04.007
25.
Bhargava
,
A.
,
Colket
,
M.
,
Sowa
,
W.
,
Casleton
,
K.
, and
Maloney
,
D.
,
2000
, “
An Experimental and Modeling Study of Humid Air Premixed Flames
,”
ASME J. Eng. Gas Turbines Power
,
122
(
3
), pp.
405
411
.10.1115/1.1286921
You do not currently have access to this content.