The dual throat nozzle (DTN) technique is capable to achieve higher thrust-vectoring efficiencies than other fluidic techniques, without compromising thrust efficiency significantly during vectoring operation. The excellent performance of the DTN is mainly due to the concaved cavity. In this paper, two DTNs of different scales have been investigated by unsteady numerical simulations to compare the parameter variations and study the effects of cavity during the vector starting process. The results remind us that during the vector starting process, dynamic loads may be generated, which is a potentially challenging problem for the aircraft trim and control.
Issue Section:
Technical Briefs
References
1.
Walker
, S. H.
, 1997
, “Lessons Learned in the Development of a National Cooperative Program
,” AIAA
Paper No. 97-3348.10.2514/6.1997-33482.
Deere
, K. A.
, 1997
, “Summary of Fluidic Thrust Vectoring Research Conducted at NASA Langley Research Center
,” AIAA
Paper No. 2003-3800.10.2514/6.2003-38003.
Deere
, K. A.
, 2000
, “Computational Investigation of the Aerodynamic Effects on Fluidic Thrust Vectoring
,” AIAA
Paper No. 2000-3598.10.2514/6.2000-35984.
YonhHeo
, J.
, and Sung
, H.-G.
, 2012
, “Fluid Thrust-Vector Control of Supersonic Jet Using Coflow Injection
,” J. Propul. Power
, 28
(4
), pp. 858
–861
.10.2514/1.B342665.
Miller
, D. N.
, Yagle
, P. J.
, and Hamstra
, J. W.
, 1999
, “Fluidic Throat Skewing for Thrust Vectoring in Fixed-Geometry Nozzles
,” AIAA
Paper No. 99-0365.10.2514/6.1999-3656.
Williams
, R. G.
, and Vittal
, B. R.
, 2002
, “Fluidic Thrust Vectoring and Throat Control Exhaust Nozzle
,” AIAA
Paper No. 2002-4060.10.2514/6.2002-40607.
Shin
, C.
, and Dong Kim
, H.
, 2010
, “A Computational Study of Thrust Vectoring Control Using Dual Throat Nozzle
,” J. Therm. Sci.
, 19
(6
), pp. 486
–490
.10.1007/s11630-010-0413-x8.
Abeyounis
, W. K.
, and Bennett
, B. D.
, Jr., 1997
, “Static Internal Performance of an Over Expanded Fixed-Geometry, Nonaxisymmetric Nozzle With Fluidic Pitch-Thrust-Vectoring Capability
,” NASA Paper No. TP-3645.9.
Strykowski
, P. J.
, and Krothapalli
, A.
, 1993
, “The Countercurrent Mixing Layer: Strategies for Shear-Layer Control
,” AIAA
Paper No. 93-3260.10.2514/6.1993-326010.
Flamm
, J. D.
, 1998
, “Experimental Study of a Nozzle Using Fluidic Counterflow for Thrust Vectoring
,” AIAA
Paper No. 98-3255.10.2514/6.1998-325511.
Deere
, K.
A, 1998
, “PAB3D Simulation of a Nozzle With Fluidic Injection For Yaw Thrust-Vector Control
,” AIAA
Paper No. 98-3254.10.2514/6.1998-325412.
Deere
, K. A.
, Berrier
, B. L.
, Flamm
, J. D.
, and Johnson
, S. K.
, 2005
, “A Computational Study of a Dual Throat Fluidic Thrust Vectoring Nozzle Concept
,” AIAA
Paper No. 2005-3502.10.2514/6.2005-350213.
Flamm
, J. D.
, Deere
, K. A.
, Berrier
, B. L.
, and Johnson
, S. K.
, 2005
, “An Experimental Study of a Dual Throat Fluidic Thrust Vectoring Nozzle Concept
,” AIAA
Paper No. 2005-3503.10.2514/6.2005-350314.
Deere
, K. A.
, Flamm
, J. D.
, Berrier
, B. L.
, and Johnson
, S. K.
, 2007
, “Computational Study of an Axisymmetric Dual Throat Fluidic Thrust Vectoring Nozzle for a Supersonic Aircraft Application
,” AIAA
Paper No. 2007-5085.10.2514/6.2007-508515.
Deere
, K. A.
, Flamm
, J. D.
, Berrier
, B. L.
, and Johnson
, S. K.
2007
, “Experimental Study of an Axisymmetric Dual Throat Fluidic Thrust Vectoring Nozzle Concept for Supersonic Aircraft Application
,” AIAA
Paper No. 2007-5084.10.2514/6.2007-508416.
Flamm
, J. D.
, Deere
, K. A.
, Mason
, M. L.
, Berrier
, B. L.
, and Johnson
, S. K.
, 2006
, “Design Enhancements of the Two-Dimensional, Dual Throat Fluidic Thrust Vectoring Nozzle Concept
,” AIAA
Paper No. 2006-3701.10.2514/6.2006-370117.
Radhakrishnan
, S.
, and Meganathan
, A. J.
, 2002
, “Open Cavity Flow at Subsonic Speeds—Comparison of Numerical Simulations With Experiments
,” AIAA
Paper No. 2002-0571.10.2514/6.2002-057118.
Li
, Z.
, Li
, J.
, and Yan
, X.
, 2011
, “Effects of Pressure Ratio and Rotational Speed on Leakage Flow and Cavity Pressure in the Staggered Labyrinth Seal
,” ASME J. Eng. Gas Turbines Power
, 133
(11
), p. 114503
.10.1115/1.400378819.
Ganine
, V.
, Umesh
, J.
, and Hills
, N.
, 2012
, “Coupled Fluid-Structure Transient Thermal Analysis of a Gas Turbine Internal Air System With Multiple Cavities
,” ASME J. Eng. Gas Turbines Power
, 134
(10
), pp. 102508
.10.1115/1.400706020.
Patankar
, S. V.
, 1980
, Numerical Heat Transfer and Fluid Flow
, McGraw-Hill
, New York
, pp. 89
–109
.Copyright © 2014 by ASME
You do not currently have access to this content.