It is known that the relative performance of thermal barrier coatings is largely dependent upon the oxidation properties of the bond coat utilized in the system. Also, the oxidation properties of diffusion-type bond coats (aluminides and their modifications) are functions of the superalloy substrate used in blade applications. Therefore, the performance of a given coating system utilizing a diffusion-type bond coat can significantly vary from one superalloy to another. Toward the objective of developing coating systems with more universal applicability, it is essential to understand the mechanisms by which the superalloy substrate can influence the coating performance. In this study, we examined the relative performance of yttria-stabilized zirconia/platinum aluminide coating system on alloys CMSX-4 and MAR M 002DS representing single-crystal and directionally-solidified alloy systems respectively using thermal exposure tests at 1150 °C with a 24-h cycling period to room temperature. Changes in coating microstructure were characterized by various electron-optical techniques. Experiment showed that the coating system on alloy MAR M 002DS had outperformed that on alloy CMSX-4, which could be related to the high thermal stability of the bond coat on alloy MAR M 002DS. From a detailed microstructural characterization, this difference in behavior could be explained at least partially in terms of variation in chemical composition of the two alloys, which was also reflected on the exact failure mechanism of the coating system.

References

1.
Pomeroy
,
M. J.
, 2005, “
Coatings for Gas Turbine Materials and Long Term Stability Issues
,”
Mater. Des.
,
26
(
3
), pp.
223
231
.
2.
Evans
,
A. G.
,
Mumm
,
D. R.
,
Hutchinson
,
J. W.
,
Meier
,
G. H.
, and
Petit
,
F. S.
, 2001, “
Mechanisms Controlling the Durability of Thermal Barrier Coatings
,”
Prog. Mater. Sci.
,
46
, pp.
505
553
.
3.
Tawancy
,
H. M.
, and
Al-Hadhrami
,
Luai M.
, 2011, “
Influence of Titanium in Nickel-Base Superalloys on the Performance of Thermal Barrier Coatings Utilizing γ-γ′ Platinum Bond Coats
,”
J. Eng. Gas Turbines Power
,
133
(
4
), p.
042101
.
4.
Lammermann
,
H.
, and
Kienel
,
G.
, 1991, “
PVD Coatings for Aircraft Turbine Blades
,”
Adv. Mater. Processes
,
140
(
6
), pp.
18
23
.
5.
Hayashi
,
S.
,
Ford
,
S. I.
,
Young
,
D. J.
,
Sordelet
,
D. J.
,
Besser
,
M. F.
, and
Gleeson
,
B.
, 2005, “
α-NiPt(Al) and Phase Equilibria in the Ni-Al-Pt System at 1150°C
,”
Acta Mater.
53
(
11
), pp.
3319
3328
.
6.
Tomaszewicz
,
P.
, and
Wallwork
,
G. R.
, 1982, “
The Degradation of Alumina-Forming Coating System on Nickel, Cobalt and Iron-Based Alloys by High Temperature Oxidation
,”
Reviews of High Temperature Materials
,
J.
Newkirk
, ed.,
Freund Publishing House
,
London
, pp.
51
60
.
7.
Hoppin
,
G. S.
, and
Danesi
,
W. P.
, 1987, “
Future of Superalloys”
Superalloys II
,
C. T.
Sims
,
N. S.
Stoloff
, and
W. C.
Hagel
, eds.,
Wiley
,
New York
, pp.
552
553
.
8.
Wallwork
,
G.
, and
Croll
,
J.
, 1976, “
A Review of the Strengthening Mechanisms in Iron and Nickel Based Fe-Ni-Cr Alloys Used at High Temperatures
” 
Reviews of High Temperature Materials
,
J.
Newkirk
, ed.,
Freund Publishing House
,
London
, pp.
117
125
.
9.
Anton
,
D. L.
,
Shah
,
D. M.
,
Duhl
,
D. N.
, and
Giamei
,
A. F.
, 1989, “
Selecting High-Temperature Structural Intermetallic Compounds: The Engineering Approach
,”
J. Met.
,
41
(
6
), pp.
12
17
.
10.
Stott
,
F. H.
, 1989,
The Role of Active Elements in the Oxidation Behavior of High Temperature Metals and Alloys
,
E.
Lang
, ed.,
Elsevier Applied Science
,
London
), pp.
3
22
.
11.
Smialek
,
J. L.
, and
Meier
,
G. H.
, 1987,
Superalloys II
,
C. T.
Sims
,
N. S.
Stoloff
, and
W. C.
Hagel
, eds.,
Wiley
,
New York
, pp.
293
326
.
12.
Levy
,
M.
,
Farrell
,
P.
, and
Pettit
,
F.
, 1986, “
Oxidation of Some Advanced Single-Crystal Nickel- Base Superalloys in Air at (2000) F (1093°C)
,”
Corrosion-NACE
,
42
(
12
), pp.
708
717
.
13.
Jedlinski
,
J.
, 1992, “
The Influence of Reactive Elements on the High Temperature Oxidation Behavior of Alumina-Forming Materials
,”
Solid State Phenom.
,
21 & 22
, pp.
335
390
.
14.
Nicholls
,
J. R.
, and
Hancock
,
P.
, 1989,
The Role of Active Elements in the Oxidation Behavior of High Temperature Metals and Alloys
,
E.
Lang
, ed.,
Elsevier
,
London
, pp.
195
224
.
15.
Haynes
,
J. A.
,
Pint
,
B. A.
,
More
,
K. L.
,
Zhang
,
Y.
, and
Wright
,
I. G.
, 2002, “
Influence of Sulfur, Platinum, and Hafnium on the Oxidation Behavior of CVD NiAl Bond Coatings
,”
Ox. Met.
,
58
(
5/6
), pp.
513
544
.
16.
Wright
,
I. G.
, and
Pint
,
B. A.
, 2005, “
Bond Coat Performance of Thermal Barrier Coatings for Industrial Gas Turbines
,”
Proc. IMechE, Part A: J. Power Energy
,
219
, pp.
1
10
.
17.
Tawancy
,
H. M.
, and
Al-Hadhrami
,
L.M.
, 2010, “
Role of Platinum in Thermal Barrier Coatings Used in Gas Turbine Blade Applications
,”
J. Eng. Gas Turbine Power
,
132
(
2
), p.
022103
.
18.
Tawancy
,
H. M.
,
Abbas
,
N. M.
, and
Rhys-Jones
,
T.N.
, 1991, “
Role of Platinum in Aluminide Coatings
,”
Surf. Coatings Technol.
,
49
(
1–3
), pp.
1
7
.
19.
Mu
,
N.
,
Izumi
,
T.
,
Zhang
,
L.
, and
Glesson
,
B.
, 2008, “
The Development and Performance of Pt+Hf -Modified γ’-Ni3Al+γ-Ni Bond Coatings for Advanced Thermal Barrier Coating Systems
,”
Superalloys 2008
,
R. C.
Reed
et al.
, eds.
The Minerals, Metals, and Materials Society
, pp.
629
637
.
20.
Haynes
,
J. A.
,
Ferber
,
M. K.
,
Porter
,
W. D.
, and
Rigney
,
E. D.
, 1999, “
Characterization of Alumina Scales Formed During Isothermal and Cyclic Oxidation of Plasma-Sprayed TBC Systems at 1150°C
,”
Ox. Met.
,
52
(
1/2
), pp.
31
76
.
21.
Tawancy
,
H. M.
, and
Sridhar
,
N.
, 1992, “
High-Temperature Oxidation Behavior of a Ni-Cr-Al-Fe-Y Alloy
,”
Ox. Met.
,
37
(
3–4
), pp.
143
166
.
22.
Tawancy
,
H. M.
, 1991, “
On the Role of Y During High-Temperature Oxidation of a Ni-Cr-Al-Fe-Y Alloy
,”
Metall. Trans. A
,
22
(
6
), pp.
1463
1465
.
You do not currently have access to this content.