This paper presents the effect of orifice configuration on the droplet atomization characteristics of diesel fuel injected through different types of group-hole nozzle angles, which are converged (θ=3deg), parallel (θ=0deg), and diverged (θ=+3deg) orifices in atmospheric pressure and room temperature condition (0.1 MPa, 293 K). It was revealed that the parallel hole nozzle has the largest Sauter mean diameter (SMD) value and both sprays from diverged and converged hole nozzles show better atomization. A comparison of spray tip penetration illustrates that as the orifice angle is converged, spray tip penetration becomes longer, and it must be the reason for the fast spray velocity. These results can confirm the relationship among time, distance, and velocity. Therefore, it can be concluded that the droplet atomization enhancement can be expected in the converged nozzle spray rather than in the parallel and diverged nozzle sprays based on the results of smaller SMD, faster velocity, better air utilization, and higher percentage of small size of droplets in the measuring area.

1.
Tokudo
,
H.
,
Itoh
,
S.
, and
Kinugawa
,
M.
, 2005, “
Denso Common Rail Technology to Successfully Meet Future Emission Regulation
,”
The 26th Bienna Motor Symposium
.
2.
Zhang
,
Y.
,
Nishida
,
K.
,
Nomura
,
S.
, and
Ito
,
T.
, 2003, “
Spray Characteristics of Group-Hole Nozzle for D.I. Diesel Engine
,” SAE Tech Paper No. 2003-01-3115.
3.
Nishida
,
K.
,
Nomura
,
S.
, and
Matsumoto
,
Y.
, 2006, “
Spray and Mixture Properties of Group-Hole Nozzle for D.I. Diesel Engines
,”
Proceedings of the Conference on ICLASS 2006
, Paper No. ICLASS2006-171.
4.
Park
,
S. W.
, and
Reitz
,
R. D.
, 2009, “
Optimization of Fuel/Air Mixture Formation for Stoichiometric Diesel Combustion Using 2-Spray-Angle Group-Hole Nozzle
,”
Fuel
0016-2361,
88
, pp.
843
852
.
5.
Adomeit
,
Ph.
,
Rohs
,
H.
,
Körfer
,
T.
, and
Busch
,
H.
, 2006, “
Spray Interaction and Mixture Formation in Diesel Engines With Grouped Hole Nozzles
,”
Proceedings of the Conference on Thermo- and Fluid Dynamics Processes in Diesel Engines
, pp.
1
12
.
6.
Moon
,
S.
,
Gao
,
J.
,
Nishida
,
K.
,
Matsumoto
,
Y.
, and
Zhang
,
Y.
, 2008, “
Ignition and Combustion Characteristics of Wall-Impinging Sprays Injected by Group-Hole Nozzles for Direct-Injection Diesel Engines
,” SAE Tech Paper No. 2008-01-2469.
7.
Park
,
S. W.
, and
Reitz
,
R. D.
, 2008, “
Modeling the Effect of Injector Nozzle Hole Layout on Diesel Engine Fuel Consumption and Emission
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
130
, p.
032805
.
8.
Kimura
,
S.
,
Ogawa
,
H.
,
Matsui
,
Y.
, and
Enomoto
,
Y.
, 2002, “
An Experimental Analysis of Low-Temperature and Premixed Combustion for Simultaneous Reduction of NOx and Particulate Emissions in Direct Injection Diesel Engines
,”
Int. J. Engine Res.
1468-0874,
3
, pp.
249
259
.
9.
Lee
,
S.
,
Gonzalez
,
M. A. D.
, and
Reitz
,
R. D.
, 2006, “
Stoichiometric Combustion in a HSDI Diesel Engine to Allow Use of a Three-Way Exhaust Catalyst
,” SAE Tech Paper No. 2006-01-1148.
10.
Lee
,
S.
,
Gonzalez
,
M. A. D.
, and
Reitz
,
R. D.
, 2007, “
Effects of Engine Operating Parameters on Near Stoichiometric Diesel Combustion Characteristics
,” SAE Tech Paper No. 2007-01-0121.
11.
Nishijima
,
Y.
,
Mashida
,
M.
,
Sasaki
,
S.
, and
Oshima
,
K.
, 2005, “
Successful Approach to Reduce Emission by Group Holes Nozzle
,”
Proceedings of 2005 JSAE Annual Congress
, Paper No. 20055073.
12.
Yoshitomi
,
K.
, and
Uchida
,
N.
, 2005, “
Effect of Group Holes Nozzle Specifications on Diesel Exhaust Emissions
,”
Proceedings of 2005 JSAE Annual Congress
, Paper No. 20055729.
13.
Yata
,
Y.
,
Kidena
,
R.
,
Kitamura
,
Y.
,
Kee
,
S. S.
,
Ishiyama
,
T.
,
Shioji
,
M.
, and
Watanabe
,
Y.
, 2006, “
Study on Ignition and Combustion of Fuel Sprays Using Group-Holes Nozzles
,”
Proceedings of 2006 JSAE Annual Congress
, Paper No. 20065792.
14.
Nishida
,
K.
,
Masumoto
,
Y.
,
Gao
,
J.
, and
Namba
,
M.
, 2007, “
Group-Hole Nozzle Effects on Mixture Formation and In-Cylinder Combustion Processes in Direct-Injection Diesel Engines
,” SAE Tech Paper No. 2007-01-4050.
15.
Gao
,
J.
,
Masumoto
,
Y.
, and
Nishida
,
K.
, 2007, “
Effect of Group-Hole Nozzle Specifications on Fuel Atomization and Evaporation of Direct Injection Diesel Spray
,” SAE Tech Paper No. 2007-01-1889.
16.
Park
,
S. W.
, and
Reitz
,
R. D.
, 2009, “
A Gas Jet Superposition Model for CFD Modeling of Group-Hole Nozzle Sprays
,”
Int. J. Heat Fluid Flow
0142-727X,
30
, pp.
1193
1201
.
17.
Suh
,
H. K.
,
Park
,
S. W.
, and
Lee
,
C. S.
, 2009, “
Effect of Grouped Hole Nozzle Geometry on the Improvement of Biodiesel Fuel Atomization Characteristics in a Compression Ignition Engine
,”
Proc. Inst. Mech. Eng., Part D (J. Automob. Eng.)
0954-4070,
223
, pp.
1587
1600
.
18.
Chung
,
J. N.
, and
Troutt
,
T. R.
, 1988, “
Simulation of PARTICLE Dispersion in an Axisymmetric Jet
,”
J. Fluid Mech.
0022-1120,
186
, pp.
199
222
.
19.
Gao
,
J.
,
Moon
,
S.
,
Zhang
,
Y.
,
Nishida
,
K.
, and
Matsumoto
,
Y.
, 2009, “
Flame Structure of Wall-Impinging Diesel Fuel Sprays Injected by Group-Hole Nozzles
,”
Combust. Flame
0010-2180,
156
(
6
), pp.
1263
1277
.
20.
Myong
,
K. J.
,
Suzuki
,
H.
,
Senda
,
J.
, and
Fujimoto
,
H.
, 2008, “
Spray Inner Structure of Evaporating Multi-Component
,”
Fuel
0016-2361,
87
(
2
), pp.
202
210
.
21.
Faeth
,
G. M.
,
Hsiang
,
L. P.
, and
Wu
,
P. K.
, 1995, “
Structure and Breakup Properties of Sprays
,”
Int. J. Multiphase Flow
0301-9322,
21
(
1
), pp.
99
127
.
22.
Sovani
,
S. D.
,
Crofts
,
J. D.
,
Sojka
,
P. E.
,
Gore
,
J. P.
, and
Eckerle
,
W. A.
, 2005, “
Structure and Steady-State Spray Performance of an Effervescent Diesel Injector
,”
Fuel
0016-2361,
84
(
12–13
), pp.
1503
1514
.
23.
Bayvel
,
L.
, and
Orzechowski
,
Z.
, 1993,
Liquid Atomization
,
Taylor & Francis
,
London
, pp.
151
156
.
You do not currently have access to this content.