This paper investigates the effects of iso-octane addition on the combustion and emission characteristics of a single-cylinder, variable compression ratio, homogeneous charge compression ignition (HCCI) engine fueled with n-heptane. The engine was operated with four fuel blends containing up to 50% iso-octane by liquid volume at 900 rpm, 50:1 air-to-fuel ratio, no exhaust gas recirculation, and an intake mixture temperature of 30°C. A detailed analysis of the regulated and unregulated emissions was performed including validation of the experimental results using a multizone model with detailed fuel chemistry. The results show that iso-octane addition reduced HCCI combustion efficiency and retarded the combustion phasing. The range of engine compression ratios where satisfactory HCCI combustion occurred was found to narrow with increasing iso-octane percentage in the fuel. NOx emissions increased with iso-octane addition at advanced combustion phasing, but the influence of iso-octane addition was negligible once CA50 (crank angle position at which 50% heat is released) was close to or after top dead center. The total unburned hydrocarbons (THC) in the exhaust consisted primarily of alkanes, alkenes, and oxygenated hydrocarbons. The percentage of alkanes, the dominant class of THC emissions, was found to be relatively constant. The alkanes were composed primarily of unburned fuel compounds, and iso-octane addition monotonically increased and decreased the iso-octane and n-heptane percentages in the THC emissions, respectively. The percentage of alkenes in the THC was not significantly affected by iso-octane addition. Iso-octane addition increased the percentage of oxygenated hydrocarbons. Small quantities of cycloalkanes and aromatics were detected when the iso-octane percentage was increased beyond 30%.

1.
Stanglmaier
,
R. H.
, and
Roberts
,
C. E.
, 1999, “
Homogeneous Charge Compression Ignition (HCCI): Benefits, Compromises, and Future Engine Applications
,” SAE Technical Paper No. 1999-01-3682.
2.
Zhao
,
F.
,
Asmus
,
T.
,
Assanis
,
D.
,
Dec
,
J. E.
,
Eng
,
J.
, and
Najt
,
P.
, 2003,
Homogeneous Charge Compression Ignition (HCCI) Engines: Key Research and Development Issues
,
Society of Automotive Engineers, Inc.
,
Warrendale, PA
.
3.
Curran
,
H. J.
,
Gaffuri
,
P.
,
Pitz
,
W. J.
, and
Westbrook
,
C. K.
, 1998, “
A Comprehensive Modeling Study of n-Heptane Oxidation
,”
Combust. Flame
0010-2180,
114
(
1–2
), pp.
149
177
.
4.
Curran
,
H. J.
,
Gaffuri
,
P.
,
Pitz
,
W. J.
, and
Westbrook
,
C. K.
, 2002, “
A Comprehensive Modeling Study of Iso-Octane Oxidation
,”
Combust. Flame
0010-2180,
129
(
3
), pp.
253
280
.
5.
Cardone
,
M.
,
Prati
,
M. V.
,
Rocco
,
V.
,
Seggiani
,
M.
,
Senatore
,
A.
, and
Vitolo
,
S.
, 2002, “
Brassica Carinata as an Alternative Oil Crop for the Production of Biodiesel in Italy: Engine Performance and Regulated and Unregulated Exhaust Emissions
,”
Environ. Sci. Technol.
0013-936X,
36
(
21
), pp.
4656
4662
.
6.
Christensen
,
M.
,
Anders
,
H.
, and
Johansson
,
B.
, 1999, “
Demonstrating the Multi Fuel Capability of a Homogeneous Charge Compression Ignition Engine With Variable Compression Ratio
,” SAE Technical Paper No. 1999-01-3679.
7.
Olsson
,
J. -O.
,
Erlandsson
,
O.
, and
Johansson
,
B.
, 2000, “
Experiments and Simulation of a Six-Cylinder Homogeneous Charge Compression Ignition (HCCI) Engine
,” SAE Technical Paper No. 2000-01-2867.
8.
Lemel
,
M.
,
Hultqvist
,
A.
,
Vressner
,
A.
,
Nordgren
,
H.
,
Persson
,
H.
, and
Johansson
,
B.
, 2005, “
Quantification of the Formaldehyde Emissions From Different HCCI Engines Running on a Range of Fuels
,” SAE Technical Paper No. 2005-01-3724.
9.
Dec
,
J. E.
, and
Sjöberg
,
M.
, 2003, “
A Parametric Study of HCCI Combustion—The Sources of Emissions at Low Loads and the Effects of GDI Fuel Injection
,” SAE Technical Paper No. 2003-01-0752.
10.
Dec
,
J. E.
,
Davisson
,
M. L.
,
Sjoberg
,
M.
,
Leif
,
R. L.
, and
Hwang
,
W.
, 2008, “
Detailed HCCI Exhaust Speciation and the Sources of Hydrocarbon and Oxygenated Hydrocarbon Emissions
,” SAE Technical Paper No. 2008-01-0053.
11.
Hessel
,
R. P.
,
Foster
,
D. E.
,
Aceves
,
S. M.
,
Davisson
,
M. L.
,
Espinosa-Loza
,
F.
,
Flowers
,
D. L.
,
Pitz
,
W. J.
,
Dec
,
J. E.
,
Sjöberg
,
M.
, and
Babajimopoulos
,
A.
, 2008, “
Modelling Iso-Octane HCCI Using CFD With Multi-Zone Detailed Chemistry; Comparison to Detailed Speciation Data Over a Range of Lean Equivalence Ratios
,” SAE Technical Paper No. 2008-01-0048.
12.
Lim
,
O. T.
,
Sendoh
,
N.
, and
Iida
,
N.
, 2004, “
Experimental Study on HCCI Combustion Characteristics of N-Heptane and Iso-Octane Fuel/Air Mixture by the Use of a Rapid Compression Machine
,” SAE Technical Paper No. 2004-01-1968.
13.
Li
,
H.
,
Neill
,
W. S.
,
Chippior
,
W.
,
Graham
,
L.
,
Connolly
,
T.
, and
Taylor
,
J. D.
, 2007, “
An Experimental Investigation on the Emission Characteristics of HCCI Engine Operation Using N-Heptane
,” SAE Technical Paper No. 2007-01-1854.
14.
Nowak
,
L.
,
Guibert
,
P.
,
Cavadias
,
S.
,
Dupré
,
S.
, and
Momique
,
J. C.
, 2008, “
Methodology Development of a Time-Resolved In-Cylinder Fuel Oxidation Analysis: Homogeneous Charge Compression Ignition Combustion Study Application
,”
Combust. Flame
0010-2180,
154
(
3
), pp.
462
472
.
15.
Guo
,
H.
,
Li
,
H.
, and
Neill
,
W. S.
, 2009, “
A Study on the Performance of Combustion in a HCCI Engine Using N-Heptane by a Multi-Zone Model
,” ASME Paper No. ICEF2009-14117.
16.
Woschni
,
G.
, 1967, “
Universally Applicable Equation for the Instantaneous Heat Transfer Coefficient in the Internal Combustion Engine
,” SAE Technical Paper No. 670931.
17.
Tien
,
C. L.
,
Irvine
,
T. F.
, Jr.
, and
James
,
P. H.
, 1969, “
Thermal Radiation Properties of Gases
,”
Adv. Heat Transfer
0065-2717,
5
, pp.
253
324
.
18.
Heywood
,
J. B.
, 1988,
Internal Combustion Engine Fundamentals
,
McGraw-Hill
,
New York
.
19.
Lawrence Livermore National Laboratory’ Primary Reference Fuels (PRF): Iso-Octane/N-Heptane Mixtures Detailed Chemical Kinetic Mechanism, Available Online at https://www-pls.llnl.gov/?url=science_and_technology-chemistry-combustion-prfhttps://www-pls.llnl.gov/?url=science_and_technology-chemistry-combustion-prf.
20.
Smith
,
G. P.
,
Golden
,
D. M.
,
Frenklach
,
M.
,
Moriarty
,
N. W.
,
Eiteneer
,
B.
,
Goldenberg
,
M.
,
Bowman
,
C. T.
,
Hanson
,
R. K.
,
Song
,
S.
,
Gardiner
,
W. C.
, Jr.
,
Lissianski
,
V. V.
, and
Qin
,
Z.
, 2010, Available Online at http://www.me.berkeley.edu/gri_mech/http://www.me.berkeley.edu/gri_mech/.
21.
Sjöberg
,
M.
, and
Dec
,
J. E.
, 2005, “
An Investigation Into Lowest Acceptable Combustion Temperatures for Hydrocarbon Fuels in HCCI Engines
,”
Proc. Combust. Inst.
1540-7489,
30
(
2
), pp.
2719
2726
.
22.
El Bakali
,
A.
,
Delfau
,
J. -L.
, and
Vovelle
,
C.
, 1999, “
Kinetic Modeling of a Rich, Atmospheric Pressure, Premixed n-Heptane/O2/N2 Flame
,”
Combust. Flame
0010-2180,
118
(
3
), pp.
381
398
.
23.
Zhang
,
H. R.
,
Eddings
,
E. G.
, and
Sarofim
,
A. F.
, 2007, “
Combustion Reactions of Paraffin Components in Liquid Transportation Fuels Using Generic Rates
,”
Combust. Sci. Technol.
0010-2202,
179
(
1&2
), pp.
61
89
.
24.
Blanquart
,
G.
,
Pepiot-Desjardins
,
P.
, and
Pitsch
,
H.
, 2009, “
Chemical Mechanism for High Temperature Combustion of Engine Relevant Fuels With Emphasis on Soot Precursors
,”
Combust. Flame
0010-2180,
156
(
3
), pp.
588
607
.
25.
Marchal
,
C.
,
Delfau
,
J. -L.
,
Vovelle
,
C.
,
Moréac
,
G.
,
Mounaïm-Rousselle
,
C.
, and
Mauss
,
F.
, 2009, “
Modelling of Aromatics and Soot Formation From Large Fuel Molecules
,”
Proc. Combust. Inst.
1540-7489,
32
(
1
), pp.
753
759
.
You do not currently have access to this content.