In the design process, new burners are generally tested in combustion test rigs. With these experiments, computational fluid dynamics, and finite element calculations, the burners’ performance in the full-scale engine is sought to be predicted. Especially, information about the thermoacoustic behavior and the emissions is very important. As the thermoacoustics strongly depend on the acoustic boundary conditions of the system, it is obvious that test rig conditions should match or be close to those of the full-scale engine. This is, however, generally not the case. Hence, if the combustion process in the test rig is stable at certain operating conditions, it may show unfavorable dynamics at the same conditions in the engine. In previous works, the authors introduced an active control scheme, which is able to mimic almost arbitrary acoustic boundary conditions. Thus, the test rig properties can be tuned to correspond to those of the full-scale engine. The acoustic boundary conditions were manipulated using woofers. In the present study, proportional valves are investigated regarding their capabilities of being used in the control scheme. It is found that the test rig impedance can be tuned equally well. In contrast to the woofers, however, the valves could be used in industrial applications, as they are more robust and exhibit more control authority. Additionally, the control scheme is further developed and used to tune the test rig at discrete frequencies. This exhibits certain advantages compared with the case of control over a broad frequency band.

1.
Lieuwen
,
T. C.
, and
Yang
,
V.
, eds., 2005,
Combustion Instabilities in Gas Turbine Engines
(
Progress in Astronautics and Aeronautics
Vol.
210
),
AIAA
,
Reston, VA
.
2.
Rea
,
S.
,
James
,
S.
,
Goy
,
C.
, and
Colechin
,
M. J. F.
, 2003, “
On-Line Combustion Monitoring on Dry Low NOx Industrial Gas Turbines
,”
Meas. Sci. Technol.
,
14
(
7
), pp.
1123
1130
. 0957-0233
3.
Sewell
,
J.
,
Sobieski
,
P.
, and
Beers
,
C.
, 2004, “
Application of Continuous Combustion Dynamics Monitoring on Large Industrial Gas Turbines
,” ASME Paper No. GT2004-54310.
4.
Mongia
,
H.
,
Held
,
T.
,
Hsiao
,
G.
, and
Pandalai
,
R.
, 2003, “
Challenges and Progress in Controlling Dynamics in Gas Turbine Combustors
,”
J. Propul. Power
0748-4658,
19
(
5
), pp.
822
829
.
5.
Streb
,
H.
,
Prade
,
B.
,
Hahner
,
T.
, and
Hoffmann
,
S.
, 2001, “
Advanced Burner Development for the VX4.3A Gas Turbines
,” ASME Paper No. 2001-GT-0077.
6.
Seume
,
J. R.
,
Vortmeyer
,
N.
,
Krause
,
W.
,
Hermann
,
J.
,
Hantschk
,
C.-C.
,
Zangl
,
P.
,
Gleis
,
S.
,
Vortmeyer
,
D.
, and
Orthmann
,
A.
, 1998, “
Application of Active Combustion Instability Control to a Heavy Duty Gas Turbine
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
120
, pp.
721
726
.
7.
Richards
,
G. A.
,
Thornton
,
J. D.
,
Robey
,
E. H.
, and
Arellano
,
L.
, 2007, “
Open-Loop Active Control of Combustion Dynamics on a Gas Turbine Engine
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
129
(
1
), pp.
38
48
.
8.
Bellucci
,
V.
,
Flohr
,
P.
,
Paschereit
,
C. O.
, and
Magni
,
F.
, 2004, “
On the Use of Helmholtz Resonators for Damping Acoustic Pulsations in Industrial Gas Turbines
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
126
(
2
), pp.
271
275
.
9.
Berenbrink
,
P.
, and
Hoffmann
,
S.
, 2000, “
Suppression of Dynamic Combustion Instabilities by Passive and Active Means
,” ASME Paper No. 2000-GT-0079.
10.
Richards
,
G. A.
,
Straub
,
D. L.
, and
Robey
,
E. H.
, 2003, “
Passive Control of Combustion Dynamics in Stationary Gas Turbines
,”
J. Propul. Power
0748-4658,
19
(
5
), pp.
795
810
.
11.
Poinsot
,
T. J.
,
Trouvé
,
A. C.
,
Veynante
,
D. P.
,
Candel
,
S. M.
, and
Esposito
,
E. J.
, 1987, “
Vortex-Driven Acoustically Coupled Combustion Instabilities
,”
J. Fluid Mech.
0022-1120,
177
, pp.
265
292
.
12.
Torres
,
H.
,
Lieuwen
,
T C.
,
Johnson
,
C.
,
Daniel
,
B. R.
, and
Zinn
,
B. T.
, 1999, “
Experimental Investigation of Combustion Instabilities in a Gas Turbine Combustor Simulator
,” AIAA Paper No. 99-0712.
13.
Bothien
,
M. R.
,
Moeck
,
J. P.
, and
Paschereit
,
C. O.
, 2007, “
Impedance Tuning of a Premixed Combustor Using Active Control
,” ASME Paper No. GT2007-27796.
14.
Guicking
,
D.
, and
Karcher
,
K.
, 1984, “
Active Impedance Control for One-Dimensional Sound
,”
ASME J. Vib., Acoust., Stress, Reliab. Des.
0739-3717,
106
, pp.
393
396
.
15.
Li
,
Y.
,
Chiu
,
G.-C.
, and
Mongeau
,
L.
, 2004, “
Dual-Driver Standing Wave Tube: Acoustic Impedance Matching With Robust Repetitive Control
,”
IEEE Trans. Control Syst. Technol.
1063-6536,
12
(
6
), pp.
869
880
.
16.
Bothien
,
M. R.
,
Moeck
,
J. P.
, and
Paschereit
,
C. O.
, 2007, “
Experimental Validation of Linear Stability Analysis in Premixed Combustors Supported by Active Control
,”
Proceedings of the 14th International Congress on Sound and Vibration
,
Cairns
, July 9–12.
17.
Moeck
,
J. P.
,
Bothien
,
M. R.
, and
Paschereit
,
C. O.
, 2007, “
An Active Control Scheme for Tuning Acoustic Impedances
,” AIAA Paper No. 2007-3540.
18.
Bothien
,
M. R.
,
Moeck
,
J. P.
,
Lacarelle
,
A.
, and
Paschereit
,
C. O.
, 2007, “
Time Domain Modelling and Stability Analysis of Complex Thermoacoustic Systems
,”
Proc. Inst. Mech. Eng., Part A
0957-6509,
221
(
5
), pp.
657
668
.
19.
Schuermans
,
B.
,
Bellucci
,
V.
,
Guethe
,
F.
,
Meili
,
F.
,
Flohr
,
P.
, and
Paschereit
,
C. O.
, 2004, “
A Detailed Analysis of Thermoacoustic Interaction Mechanisms in a Turbulent Premixed Flame
,” ASME Paper No. 2004-GT-53831.
20.
Paschereit
,
C. O.
,
Schuermans
,
B.
,
Polifke
,
W.
, and
Mattson
,
O.
, 2002, “
Measurement of Transfer Matrices and Source Terms of Premixed Flames
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
124
(
2
), pp.
239
247
.
21.
Gustavsen
,
B.
, and
Semlyen
,
A.
, 1999, “
Rational Approximation of Frequency Domain Responses by Vector Fitting
,”
IEEE Trans. Power Deliv.
0885-8977,
14
(
3
), pp.
1052
1061
.
22.
Schuermans
,
B.
,
Bellucci
,
V.
, and
Paschereit
,
C. O.
, 2003, “
Thermoacoustic Modeling and Control of Multi Burner Combustion Systems
,” ASME Paper No. 2003-GT-38688.
23.
Krebs
,
W.
,
Flohr
,
P.
,
Prade
,
B.
, and
Hoffmann
,
S.
, 2002, “
Thermoacoustic Stability Chart for High-Intensity Gas Turbine Combustion Systems
,”
Combust. Sci. Technol.
0010-2202,
174
(
7
), pp.
99
128
.
24.
Kopitz
,
J.
,
Huber
,
A.
,
Sattelmayer
,
T.
, and
Polifke
,
W.
, 2005, “
Thermoacoustic Stability Analysis of an Annular Combustion Chamber With Acoustic Low Order Modeling and Validation Against Experiment
,” ASME Paper No. GT2005-68797.
25.
Moeck
,
J. P.
,
Bothien
,
M. R.
,
Paschereit
,
C. O.
,
Gelbert
,
G.
, and
King
,
R.
, 2007, “
Two-Parameter Extremum Seeking for Control of Thermoacoustic Instabilities and Characterization of Linear Growth
,” AIAA Paper No. 2007-1416.
26.
Zhao
,
D.
, and
Morgans
,
A. S.
, 2007, “
Tuned Passive Control of Combustion Instabilities Using Multiple Helmholtz Resonators
,” AIAA Paper No. 2007-3423.
27.
Bechert
,
D. W.
, 1980, “
Sound Absorption Caused by Vorticity Shedding, Demonstrated With a Jet Flow
,”
J. Sound Vib.
0022-460X,
70
(
3
), pp.
389
405
.
28.
Paschereit
,
C. O.
,
Gutmark
,
E.
, and
Weisenstein
,
W.
, 2000, “
Excitation of Thermoacoustic Instabilities by Interaction of Acoustics and Unstable Swirling Flow
,”
AIAA J.
,
38
(
6
), pp.
1025
1034
. 0001-1452
29.
Levine
,
H.
, and
Schwinger
,
J.
, 1948, “
On the Radiation of Sound From an Unflanged Circular Pipe
,”
Phys. Rev.
0031-899X,
73
(
4
), pp.
383
406
.
You do not currently have access to this content.