Conventional ignition systems of aeroengines are an integral part of the combustion chamber’s structure. Due to this hardware-related constraint, the ignition spark has to be generated in the quench zone of the combustion chamber, which is far from the optimum regarding thermo- and aerodynamics. An improved ignitability of the fuel-air mixture can be found in the central zone of the combustor, where higher local equivalence ratios prevail and where mixing is favorable for a smooth ignition. It would be a major advancement in aeroengine design to position the ignition kernel in these zones. A laser system is able to ignite the fuel-air mixture at almost any location inside of the combustion chamber. Commercial laser systems are under development, which can replace conventional spark plugs in internal combustion engines and gas turbines. This study was conducted to evaluate the applicability of laser ignition in liquid-fueled aeroengines. Ignition tests were performed with premixed natural gas and kerosene to evaluate the different approaches of laser and spark plug ignition. The experiments were carried out on a generic test rig with a well-investigated swirler, allowing sufficient operational flexibility for parametric testing. The possibility of the free choice of the laser’s focal point is the main advantage of laser-induced ignition. Placing the ignition kernel at the spray cone’s shear layer or at favorable locations in the recirculation zone could significantly increase the ignitability of the system. Consequently, the laser ignition of atomized kerosene was successfully tested down to a global equivalence ratio of 0.23. Furthermore, the laser outperformed the spark plug at ignition locations below axial distances of 50 mm from the spray nozzle.

1.
Lefebvre
,
A. H.
, 1983,
Gas Turbine Combustion
,
Hemisphere
,
Washington, DC
.
2.
Rager
,
J.
, 2006, “
Funkenerosion an Zündkerzenelektroden
,” Naturwissenschaftlich-Technische Fakultät III, Universität des Saarlandes.
3.
Robert Bosch GmbH
, 2002, Zündung im Ottomotor.
4.
Pischinger
,
F.
, 2001, “
DFG Sonderforschungsbereich 224 ‘Motorische Verbrennung’: Chapter 3.2—Zündung
,” Lehrstuhl für Verbrennungskraftmaschinen, RWTH Aachen.
5.
Kopecek
,
H.
,
Charareh
,
S.
,
Lackner
,
M.
,
Forsich
,
C.
,
Winter
,
F.
,
Klausner
,
J.
,
Herdin
,
G.
,
Weinrotter
,
M.
, and
Wintner
,
E.
, 2005, “
Laser Ignition of Methane-Air Mixtures at High Pressures and Diagnostics
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
127
(
1
), pp.
213
219
.
6.
Ronney
,
P. D.
, 1994, “
Laser Versus Conventional Ignition of Flames
,”
Opt. Eng.
0091-3286,
33
(
2
), pp.
510
521
.
7.
Kröner
,
M.
, 2003, “
Einfluss lokaler Löschvorgänge auf den Flammenrückschlag durch verbrennungsinduziertes Wirbelaufplatzen
,” Lehrstuhl für Thermodynamik, Technische Universität München.
8.
Lackner
,
M.
,
Winter
,
F.
,
Graf
,
J.
,
Geringer
,
B.
,
Weinrotter
,
M.
,
Kopecek
,
H.
,
Wintner
,
E.
,
Klausner
,
J.
, and
Herdin
,
G.
, 2004, “
Laser Ignition in Internal Combustion Engines: A Contribution to a Sustainable Environment
,”
Proceedings of the 14th IFRF Members Conference
,
Noordwijkerhout, The Netherlands
, May 11–14.
9.
LOT-Oriel
, 2006, Kompakter Nd:YAG-Laser Brio.
10.
Linos
, 2006, Plano-Concave Lenses.
11.
Maly
,
R.
, and
Borgnakke
,
C.
, 1984,
Fuel Economy in Road Vehicles Powered by Spark Ignition Engines
,
Plenum
,
New York
.
12.
Carleton
,
F. B.
,
Klein
,
N.
,
Krallis
,
K.
, and
Weinberg
,
F. J.
, 1990, “
Laser Ignition of Liquid Propellants
,”
Proceedings of the 23rd Symposium International on Combustion
,
Orleans, France
, July 22–27, pp.
1323
1329
.
13.
Chen
,
Y.-L.
, and
Lewis
,
J. W. L.
, 2001, “
Visualization of Laser-Induced Breakdown and Ignition
,”
Opt. Express
,
9
(
7
), pp.
360
371
. 1094-4087
14.
Lackner
,
M.
,
Charareh
,
S.
,
Winter
,
F.
,
Iskra
,
K. F.
,
Ruedisser
,
D.
,
Neger
,
T.
,
Kopecek
,
H.
, and
Wintner
,
E.
, 2004, “
Investigation of the Early Stages in Laser-Induced Ignition by Schlieren Photography and Laser-Induced Fluorescence Spectroscopy
,”
Opt. Express
1094-4087,
12
(
19
), pp.
4546
4557
.
15.
Turns
,
S. R.
, 2000,
An Introduction to Combustion: Concepts and Applications
,
McGraw-Hill
,
New York
.
16.
Lefebvre
,
A. H.
, 1989,
Atomization and Sprays
,
Hemisphere
,
New York
.
17.
Wäsle
,
J.
,
Winkler
,
A.
, and
Sattelmayer
,
T.
, 2005, “
TD1: Experimental Investigation of the TD1 Swirl Burner
,” Lehrstuhl für Thermodynamik, Technische Universität München.
18.
Lechler
, 2006, Axial Hollow Cone Nozzles.
19.
Müsing
,
A.
,
Riedel
,
U.
,
Warnatz
,
J.
,
Herden
,
W.
, and
Ridderbusch
,
H.
, 2007, “
Laser-Induced Breakdown in Air and Behind Droplets: A Detailed Monte-Carlo Simulation
,”
Proc. Combust. Inst.
,
31
, pp.
3007
3014
. 1540-7489
You do not currently have access to this content.