The present work focuses on the dynamic characterization of oil-free wire mesh dampers. The research was aimed at determining nonlinear stiffness and damping coefficients while varying the excitation amplitude, excitation frequency, and static eccentricity. Force coefficients were extracted using a forced response method and also a transient vibration method. Due to the nonlinearity of the dampers, controlled amplitude single frequency excitation tests were required for the forced excitation method, whereas the transient response was analyzed using a Hilbert transform procedure. The experimental results showed that eccentricity has minimal influence on force coefficients, whereas increasing excitation amplitude and frequency yields decreasing stiffness and damping trends. In addition to the parameter identification tests, a rotating test was performed demonstrating high-speed damping capability of the oil-free wire mesh dampers to 40,000 rpm, which was also simulated using a nonlinear rotordynamic response to imbalance analysis.

1.
Della Pietra
,
L.
, and
Adiletta
,
G.
, 2002, “
The Squeeze Film Damper Over Four Decades of Investigations. Part I: Characteristics and Operating Features
,”
Shock Vib. Dig.
0583-1024,
34
(
1
), pp.
3
26
.
2.
Adiletta
,
G.
, and
Della Pietra
,
L.
, 2002, “
The Squeeze Film Damper Over Four Decades of Investigations. Part II: Rotordynamic Analyses With Rigid and Flexible Rotors
,”
Shock Vib. Dig.
0583-1024,
34
(
2
), pp.
97
126
.
3.
Childs
,
D. W.
, 1978, “
Space Shuttle Main Engine High-Pressure Fuel Turbopump Rotordynamic Instability Problem
,”
ASME J. Eng. Power
0022-0825,
100
, pp.
48
57
.
4.
Okayasu
,
A.
,
Ohta
,
T.
,
Azuma
,
T.
,
Fujita
,
T.
, and
Aoki
,
H.
, 1990, “
Vibration Problems in the LE-7 Liquid Hydrogen Turbopump
,”
Proceedings of the 26th AIAA/SAE/ASME/ASEE 26th Joint Propulsion Conference
, pp.
1
5
.
5.
Ertas
,
B.
,
Al-Khateeb
,
E. M.
, and
Vance
,
J. M.
, 2004, “
Rotordynamic Bearing Dampers for Cryogenic Rocket Engine Turbopumps
,”
J. Propul. Power
0748-4658,
20
, pp.
674
682
.
6.
Zarzour
,
M.
, and
Vance
,
J.
, 2000, “
Experimental Evaluation of a Metal Mesh Bearing Damper
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
121
, pp.
326
329
.
7.
Al-Khateeb
,
E. M.
, and
Vance
,
J. M.
, 2001, “
Experimental Evaluation of a Metal Mesh Bearing Damper in Parallel With a Structural Support
,” ASME Paper No. 2001-GT-0247.
8.
Al-Khateeb
,
E. M.
, 2002, “
Design, Modeling, and Experimental Investigation of Wire Mesh Vibration Dampers
,” Ph.D. thesis, Texas A&M University, College Station, TX.
9.
Spring
,
S. D.
,
Kaminske
,
M.
,
Leone
,
S.
,
Drexel
,
M. V.
,
Ertas
,
B. H.
,
GE Research Center
,
Ames
,
E. C.
,
Agarwal
,
G.
,
Burr
,
D.
, and
Brophy
,
M.
, 2006, “
Application of Compliant Foil Air Bearings for Oil Free Operation of Advanced Turboshaft Engines
,”
American Helicopter Society 62nd Annual Forum
, May 8–11, Vol.
III
, pp.
2070
2075
.
10.
Murphy
,
B.
,
Scharrer
,
J.
, and
Sutton
,
R.
, 1990, “
The Rocketdyne Multifunction Tester Part I: Test Method
,” Workshop on Rotordynamic Instability Problems in High Performance Turbomachinery, Texas A&M University,
College Station, TX
.
11.
Childs
,
D. W.
, and
Hale
,
K.
, 1994, “
A Test Apparatus and Facility to Identify the Rotordynamic Coefficients of High Speed Hydrostatic Bearings
,”
J. Am. Inst. Electr. Eng.
0095-9804,
116
, pp.
337
334
.
12.
Ertas
,
B.
,
Gamal
,
A.
, and
Vance
,
J.
, 2006, “
Rotordynamic Force Coefficients of Pocket Damper Seals
,”
ASME J. Turbomach.
0889-504X,
128
(
4
), pp.
725
737
.
13.
Ertas
,
B. H.
,
Drexel
,
M.
,
VanDam
,
J.
, and
Hallman
,
D.
, 2008, “
A General Purpose Test Facility for Evaluating Gas Lubricated Journal Bearings
,” Paper No. ISROMAC12–2008-20207.
14.
Bendat
,
J. S.
, and
Piersol
,
A. G.
, 1986,
Random Data: Analysis and Measurement Procedures
, 2nd ed.,
Wiley
,
New York
.
15.
Boashash
,
B.
, 1992, “
Estimating and Interpreting the Instantaneous Frequency of a Signal—Part I. Fundamentals
,”
Proc. IEEE
0018-9219,
80
(
4
), pp.
520
538
.
16.
Huang
,
N. E.
,
Shen
,
Z.
,
Long
,
S. R.
,
Wu
,
M. C.
,
Shih
,
E. H.
,
Zheng
,
Q.
,
Tung
,
C. C.
, and
Liu
,
H. H.
, 1998, “
The Empirical Mode Decomposition and the Hilbert Spectrum for Nonlinear and Nonstationary Time Series Analysis
,”
Proc. R. Soc. London, Ser. A
1364-5021
454
, pp.
903
995
.
17.
Thrane
,
N.
,
Wismer
,
J.
,
Konstantin-Hansen
,
H.
, and
Gade
,
S.
, “
Practical Use of the Hilbert Transform
,” B&K Application Note No. bo0437-11.
18.
Feldman
,
M.
, 1994, “
Nonlinear System Vibration Analysis Using Hilbert Transform—I. Free Vibration Analysis Method FREEVIB
,”
Mech. Syst. Signal Process.
0888-3270,
8
(
2
), pp.
119
127
.
19.
Bedrosian
,
E.
, 1963, “
A Product Theorem for Hilbert Transforms
,”
Proc. IEEE
0018-9219,
51
(
5
), pp.
868
869
.
20.
Allara
,
M.
,
Filippi
,
S.
, and
Gola
,
M.
, 2006, “
An Experimental Method for the Measurement of Blade0root Damping
,” ASME Paper No. GT-2006-90774.
You do not currently have access to this content.