A new thermohydrodynamic (THD) analysis for compliant flexure pivot tilting pad gas bearings is presented. Unlike many previous THD analyses on oil-lubricated bearings and gas bearings, the new THD analysis solves the rotor and bearing pad temperatures as well as the gas film temperature simultaneously upon adequate thermal boundary conditions on the bearing shell and rotor ends are given. All the previous studies assume that the rotor and bearing temperatures are given as thermal boundary conditions to solve 2D or 3D energy equation in the bearing film. The developed computational method is unique because these boundary conditions are found internally through global energy balance around the bearing. A numerical procedure involves solving the generalized Reynolds equation, 3D energy equation, and heat flux equations around the bearings simultaneously through iterative process. Furthermore, rotor thermal and centrifugal expansions are also considered during the iteration. Parametric studies were performed for the various temperature fields, i.e., rotor temperature, gas film temperature, and pad temperature as a function of nominal clearance, external load, and various thermal boundary conditions. Nominal clearance showed the most significant influence on overall THD behavior. The analyses also show that the rotor-bearing system can go to thermal runaway if adequate cooling mechanism does not exist. Linear perturbation analysis was also performed to investigate the thermal effects on the rotordynamic performance. Rotor thermal growth and increased viscosity increased direct stiffness and damping coefficients compared to the isothermal case.

2.
Veyo
,
S. E.
,
Shockling
,
L. A.
,
Dederer
,
J. T.
,
Gillet
,
J. E.
, and
Lundberg
,
W. L.
, 2002, “
Tubular Solid Oxide Fuel Cell/Gas Turbine Hybrid Cycle Power Systems: Status
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
124
, pp.
845
849
.
3.
Costamagna
,
P.
,
Magistri
,
L.
, and
Massardo
,
A. F.
, 2001, “
Design and Part-Load Performance of a Hybrid System Based on a Solid Oxide Fuel Cell Reactor and a Micro Gas Turbine
,”
J. Power Sources
0378-7753,
96
, pp.
352
368
.
6.
Trivedi
,
H. K.
,
Klenke
,
C. J.
, and
Saba
,
C. S.
, 2004, “
Effect of Formulation and Temperature on Boundary Lubrication Performance of Polyphenylethers (5P4E)
,”
Tribol. Lett.
1023-8883,
17
(
1
), pp.
1
10
.
7.
Trivedi
,
H. K.
,
Saba
,
C. S.
, and
Givan
,
G. D.
, 2002, “
Thermal Stability of a Linear Perfluoropolyalkylether in a Rolling Contact Fatigue Tester
,”
Tribol. Lett.
1023-8883,
12
(
3
), pp.
171
182
.
8.
Lund
,
J.
, 1964, “
Spring and Damping Coefficients for the Tilting Pad Journal Bearing
,”
ASLE Trans.
0569-8197,
7
, pp.
342
352
.
9.
Pan
,
C. H. T.
, 1965, “
Spectral Analysis of Gas Bearing Systems for Stability Studies
,”
Developments in Mechanics
,
Proceedings of the Ninth Midwestern Mechanics Conference
,
T. C.
Huang
and
M. W.
Johnson
, Jr.
, eds.,
Wiley
,
New York
, Vol.
3
, Pt. 2, pp.
431
448
.
10.
Lund
,
J. W.
, 1968, “
Calculation of Stiffness and Damping Properties of Gas Bearings
,”
ASME J. Lubr. Technol.
0022-2305,
90
(
4
), pp.
793
803
.
11.
Heshmat
,
H.
,
Shapiro
,
W.
, and
Gray
,
S.
, 1982, “
Development of Foil Journal Bearings for High Load Capacity and High Speed Whirl Stability
,”
ASME J. Lubr. Technol.
0022-2305,
104
, pp.
149
156
.
12.
Heshmat
,
H.
, 1994, “
Advancements in the Performance of Aerodynamic Foil Journal Bearings: High Speed and Load Capacity
,”
ASME J. Tribol.
0742-4787,
116
, pp.
287
295
.
13.
Agrawal
,
G. L.
, 1997, “
Foil Air/Gas Bearing Technology—An Overview
,” ASME Paper No. 97-GT-347.
14.
DellaCorte
,
C.
, and
Valco
,
M. J.
, 2000, “
Load Capacity Estimation of Foil Air Journal Bearings for Oil-Free Turbo-Machinery Applications
,”
STLE Tribol. Trans.
1040-2004,
43
(
4
), pp.
795
801
.
15.
Carpino
,
M.
, and
Talmage
,
G.
, 2003, “
A Fully Coupled Finite Element Formulation for Elastically Supported Foil Journal Bearings
,”
STLE Tribol. Trans.
1040-2004,
46
, pp.
560
565
.
16.
Peng
,
J. P.
, and
Carpino
,
M.
, 1993, “
Calculation of Stiffness and Damping Coefficients for Elastically Supported Gas Foil Bearings
,”
ASME J. Tribol.
0742-4787,
115
(
1
), pp.
20
27
.
17.
Saleui
,
M.
,
Swanson
,
E.
, and
Heshmat
,
H.
, 2001, “
Thermal Features of Compliant Foil Bearings—Theory and Experiments
,”
ASME J. Tribol.
0742-4787,
123
, pp.
566
571
.
18.
Dykas
,
B.
, and
Howard
,
S. A.
, 2004, “
Journal Design Considerations for Turbomachine Shafts Supported on Foil Air Bearings
,”
STLE Tribol. Trans.
1040-2004,
47
, pp.
508
516
.
19.
Zhu
,
X.
, and
San Andrés
,
L.
, 2004, “
Rotordynamic Performance of Flexural Pivot Hydrostatic Gas Bearings for Oil-Free Turbomachinery
,” ASME Paper No. GT2004-53621.
20.
San Andrés
,
L.
, 2006, “
Hybrid Flexure Pivot-Tilting Pad Gas Bearings: Analysis and Experimental Validation
,”
ASME J. Tribol.
0742-4787,
128
, pp.
551
558
.
21.
Radil
,
K.
, and
Zeszotek
,
M.
, 2004, “
An Experimental Investigation Into the Temperature Profile of a Compliant Foil Air Bearing
,”
Proceedings of the STLE 59th Annual Meeting
,
Toronto
, pp.
470
479
.
22.
Peng
,
Z.-C.
, and
Khonsari
,
M. M.
, 2006, “
A Thermohydrodynamic Analysis of Foil Journal Bearings
,”
ASME J. Tribol.
0742-4787,
128
, pp.
534
541
.
23.
Sim
,
K. H.
, and
Kim
,
D.
, 2007, “
Design of Flexure Pivot Tilting Pad Gas Bearings for High Speed Oil-Free Micro Turbomachinery
,”
ASME J. Tribol.
0742-4787,
129
(
1
), pp.
112
119
.
24.
Kim
,
D.
, 2007, “
Parametric Studies on Static and Dynamic Performance of Air Foil Bearings With Different Top Foil Geometries and Bump Stiffness Distributions
,”
ASME J. Tribol.
0742-4787,
129
(
2
), pp.
354
364
.
25.
Pan
,
C. T.
, and
Kim
,
D.
, 2007, “
Stability Characteristics of a Rigid Rotor Supported by a Gas Lubricated Spiral-Groove Conical Bearing
,”
ASME J. Tribol.
0742-4787,
129
(
2
), pp.
375
383
.
26.
Song
,
J.-H.
, and
Kim
,
D.
, 2007, “
Foil Gas Bearing With Compression Springs: Analyses and Experiments
,”
ASME J. Tribol.
0742-4787,
129
(
3
), pp.
628
639
.
30.
Zeidan
,
F.
, and
Paquette
,
D. J.
, 1994, “
Application of High-Speed and High Performance Fluid Film Bearings in Rotating Machinery
,”
Proceedings of the 23th Turbomachinery Symposium
,
Dallas, TX
, pp.
209
234
.
31.
Chen
,
W. J.
,
Zeidan
,
F. Y.
, and
Jain
,
D.
, 1994, “
Design, Analysis and Testing of High Performance Bearing in a High-Speed Integrally Geared Compressor
,”
Proceedings of the 23rd Turbomachinery Symposium
,
Dallas, TX
.
32.
Cope
,
W. F.
, 1949, “
Hydrodynamic Theory of Film Lubrication
,”
Proc. R. Soc. London, Ser. A
1364-5021,
197
, pp.
201
216
.
33.
Zienkiewicz
,
O.
, 1958, “
Temperature Distribution Within Lubrication Film between Parallel Bearing Surfaces and Its Effect on the Pressures Developed
,”
Proceedings of the Conference on Lubrication and Wear
,
Institution of Mechanical Engineers
,
London
, Vol.
28
, pp.
135
141
.
34.
Hunter
,
W.
, and
Zienkiewicz
,
O.
, 1960, “
Effect of Temperature Variation Across the Lubrication Film in the Theory of Hydrodynamic Lubrication
,”
J. Mech. Eng. Sci.
0022-2542,
2
(
1
), pp.
52
58
.
35.
Dowson
,
D.
,
Hudson
,
J.
,
Hunter
,
B.
, and
March
,
C.
, 1966, “
An Experimental Investigation of the Thermal Equilibrium of Steadily Loaded Journal Bearings
,”
Proc. Inst. Mech. Eng.
0020-3483,
101
(
3B
), pp.
70
80
.
36.
Knight
,
J. D.
, and
Barrett
,
L. E.
, 1988, “
Analysis of Tilting Pad Journal Bearings With Heat Transfer Effects
,”
ASME J. Tribol.
0742-4787,
110
, pp.
128
133
.
37.
Taniguchi
,
S.
,
Makino
,
T.
,
Takeshita
,
K.
, and
Ichimura
,
T.
, 1990, “
A Thermohydrodynamic Analysis of Large Tilting Pad Journal Bearing in Laminar and Turbulent Flow Regimes With Mixing
,”
ASME J. Tribol.
0742-4787,
112
, pp.
542
549
.
38.
Kim
,
J.
,
Palazzolo
,
A.
, and
Gadangi
,
R.
, 1994, “
TEHD Analysis for Tilting-Pad Journal Bearings Using Upwind Finite Element Method
,”
STLE Tribol. Trans.
1040-2004,
37
, pp.
771
783
.
39.
Fillon
,
M.
,
Bligoud
,
J.-C.
, and
Frene
,
J.
, 1992, “
Experimental Study of Tilting-Pad Journal Bearings—Comparison With Theoretical Thermoelastohydrodynamic Results
,”
ASME J. Tribol.
0742-4787,
114
, pp.
579
567
.
40.
Khonsari
,
M. M.
, and
Beaman
,
J. J.
, 1986, “
Thermohydrodynamic Analysis of Laminar Incompressible Journal Bearings
,”
ASLE Trans.
0569-8197,
29
, pp.
141
150
.
41.
Pinkus
,
O.
, and
Bupara
,
S. S.
, 1979, “
Adiabatic Solution for Finite Journal Bearings
,”
ASME J. Lubr. Technol.
0022-2305,
101
, pp.
578
587
.
42.
Holman
,
J. P.
, 1997,
Heat Transfer
, 8th ed.,
McGraw-Hill
,
New York
, pp.
44
47
.
43.
Timoshenko
,
S. P.
, and
Goodier
,
J. N.
, 1970,
Theory of Elasticity
,
McGraw-Hill
,
New York
.
44.
Patankar
,
S. V.
, 1980,
Numerical Heat Transfer and Fluid Flow
,
McGraw-Hill
,
New York
, Chap. 5.
45.
Heshmat
,
H.
, and
Pinkus
,
O.
, 1986, “
Mixing Inlet Temperatures in Hydrodynamic Bearings
,”
ASME J. Tribol.
0742-4787,
108
, pp.
231
248
.
46.
Ettles
,
C.
, 1980, “
The Analysis and Performance of Pivoted Pad Journal Bearings Considering Thermal and Elastic Effects
,”
ASME J. Lubr. Technol.
0022-2305,
102
, pp.
182
192
.
47.
Mills
,
A. F.
, 1999,
Heat Transfer
, 2nd ed.,
Prentice-Hall
,
Upper Saddle River, NJ
, pp.
362
365
.
48.
Mills
,
A. F.
, 1999,
Heat Transfer
, 2nd ed.,
Prentice-Hall
,
Upper Saddle River, NJ
, pp.
162
164
.
49.
Delgado
,
A.
,
Justak
,
J. F.
, and
San Andrés
,
L.
, 2004, “
Analysis of Performance and Rotordynamic Force Coefficients of Brush Seals With Reverse Rotation Ability
,” ASME Paper No. GT-2004-53614.
You do not currently have access to this content.