An automatic approach for the multi-objective shape optimization of microgas turbine heat exchangers is presented. According to the concept of multidisciplinary optimization, the methodology integrates a CAD parametric model of the heat transfer surfaces, a three-dimensional meshing tool, and a CFD solver, all managed by a design optimization platform. The repetitive pattern of the surface geometry has been exploited to reduce the computational domain size, and the constant flux boundary conditions have been imposed to better suit the real operative conditions. A new approach that couples cold and warm fluids in a periodic unitary cell is introduced. The effectiveness of the numerical procedure was verified comparing the numerical results with available literature data. The optimization objectives are maximizing the heat transfer rate and minimizing both friction factor and heat transfer surface. The paper presents the results of the optimization of a 50kWMGT recuperator. The design procedure can be effectively extended and applied to any industrial heat exchanger application.

1.
Lagerstrom
,
G.
, and
Xie
,
M.
, 2002, “
High Performance & Cost Effective Recuperator for Micro-Gas Turbines
,”
Proceedings of ASME TurboExpo 2002
, Jun. 3–6,
Amsterdam, The Netherlands
.
2.
Curzio
,
E. L.
,
Trejo
,
R.
,
More
,
K. L.
,
Maziasz
,
P. A.
, and
Pint
,
B. A.
, 2004, “
Screening and Evaluation of Materials for Microturbine Recuperators
,”
Proceedings of ASME TurboExpo 2004
, Jun. 14–17,
Vienna, Austria
.
3.
Maziasz
,
P. J.
, and
Swindeman
,
R. W.
, 2001, “
Selecting and Developing Advanced Alloys for Creep-Resistance for Microturbine Recuperator Applications
,”
Proceedings of ASME TurboExpo 2001
, Jun. 4–7,
New Orleans, LA
.
4.
Matthews
,
W. J.
, 2006, “
Additional Engine Testing of an Advanced Alloy for Microturbine Primary Surface Recuperators
,”
Proceedings of ASME TurboExpo 2006
, May 8–11,
Barcelona, Spain
.
5.
Rakowski
,
J. M.
,
Stinner
,
C. P.
,
Lipschutz
,
M.
, and
Montagne
,
J. P.
, 2004, “
The Use and Performance of Oxidation and Creep Resistant Stainless Steels in Exhaust Gas Primary Surface Recuperator Application
,”
Proceedings of ASME TurboExpo 2004
, Jun. 14–17,
Vienna, Austria
.
6.
McDonald
,
C. F.
, 2000, “
Low Cost Recuperator Concept for Microturbine Applications
,”
Proceedings of ASME TurboExpo 2000
, May 8–11,
Munich, Germany
.
7.
Kesseli
,
S.
,
Wolf
,
T.
,
Nash
,
J.
, and
Freedman
,
S.
, 2003, “
Micro, Industrial and Advanced Gas Turbines Employing Recuperators
,”
Proceedings of ASME TurboExpo 2003
, Jun. 16–19,
Atlanta
.
8.
Traverso
,
A.
,
Zanzarsi
,
F.
, and
Massardo
,
A.
, 2004, “
CHEOPE: A Tool for the Optimal Design of Compact Recuperators
,”
Proceedings of ASME TurboExpo 2004
, Jun. 14–17,
Vienna, Austria
.
9.
Maziasz
,
P. J.
,
Pint
,
B. A.
,
Shingledecker
,
J. P.
,
More
,
K. L.
,
Evans
,
N. D.
, and
Curzio
,
E. L.
, 2004, “
Austenitic Stainless Steels and Alloys With Improved High-Temperature Performance for Advanced Microturbine Recuperators
,”
Proceedings of ASME TurboExpo 2004
, Jun. 14–17,
Vienna, Austria
.
10.
Utriainen
,
E.
, and
Sundèn
,
B.
, 2001, “
A Comparison of Some Heat Transfer Surfaces for Small Gas Turbine Recuperators
,”
Proceedings of ASME TurboExpo 2001
, Jun. 4–7,
New Orleans, LA
.
11.
Liang
,
H. X.
,
Xie
,
G. N.
,
Zeng
,
M.
,
Wang
,
Q. W.
,
Luo
,
L. Q.
, and
Feng
,
Z. P.
, 2006, “
Genetic Algorithm Optimization for Primary Surfaces Recuperator of Microturbine
,”
Proceedings of ASME TurboExpo 2006
, May 8–11,
Barcelona, Spain
.
12.
Manzan
,
M.
,
Micheli
,
D.
, and
Pieri
,
S.
, 2006, “
Automatic Integration in the Design of a Microturbine Compact Recuperator
,”
Proceedings of ASME TurboExpo 2006
, May 8–11,
Barcelona, Spain
.
13.
Stasiek
,
J.
,
Collins
,
M. W.
, and
Ciofalo
,
M.
, 1996, “
Investigation of Flow and Heat Transfer in Corrugated Passages—I. Experimental Results
,”
Int. J. Heat Mass Transfer
0017-9310,
39
(
1
), pp.
149
164
.
14.
Ciofalo
,
M.
,
Stasiek
,
J.
, and
Collins
,
M. W.
, 1996, “
Investigation of Flow and Heat Transfer in Corrugated Passages—II. Numerical Simulations
,”
Int. J. Heat Mass Transfer
0017-9310,
39
(
1
), pp.
165
192
.
15.
Croce
,
G.
, and
D’Agaro
,
P.
, 2002, “
Numerical Analysis of Forced Convection in Plate and Frame Heat Exchangers
,”
Int. J. Numer. Methods Heat Fluid Flow
0961-5539,
12
(
6
), pp.
756
771
.
16.
Escola
,
G.
,
Bucey
,
C. W.
,
Montague
,
P.
, and
Telfer
,
M. J.
, 2006, “
Improvement of Microturbine Recuperators Using Taguchi Methodology
,”
Proceedings of ASME TurboExpo 2006
, May 8–11,
Barcelona, Spain
.
17.
Rao
,
S.
, 1996,
Engineering Optimization
,
Wiley
,
New York
.
18.
Deb
,
K.
, 1999, “
Evolutionary Algorithms for Multi-Criterion Optimization Engineering Design
,”
Evolutionary Algorithms in Engineering and Computer Science
,
Wiley
,
New York
.
19.
Poloni
,
C.
, and
Pediroda
,
V.
, 1996, “
GA Coupled With Computationally Expensive Simulations: Tools to Improve Efficiency
,”
Genetic Algorithms and Evolution Strategy in Engineering and Computer Science
,
Wiley
,
New York
, Chap. 13, pp.
267
288
.
20.
MODEFRONTIER, version 3.2 Documentation, http://www.esteco.ithttp://www.esteco.it.
21.
Webb
,
R. L.
, 1981, “
Performance Evaluation Criteria for Use of Enhanced Heat Transfer Surfaces in Heat Exchanger Design
,”
Int. J. Heat Mass Transfer
0017-9310,
24
, pp.
715
726
.
22.
Webb
,
R. L.
, and
Eckert
,
E. R. G.
, 1972, “
Application of Rough Surfaces to Heat Exchanger Design
,”
Int. J. Heat Mass Transfer
0017-9310,
21
, pp.
1647
1658
.
23.
Bergles
,
A. E.
,
Bunn
,
R. L.
, and
Junkhan
,
G. H.
, 1974, “
Extended Performance Evaluation Criteria for Enhanced Heat Transfer Surfaces
,”
Lett. Heat Mass Transfer
0094-4548,
1
, pp.
113
120
.
24.
Valentino
,
P.
,
Clarich
,
A.
,
Mosetti
,
Giovanni
, and
Poloni
,
C.
, 2005, “
Application of Evolutionary Algorithms and Statistical Analysis in the Numerical Optimization of an Axial Compressor
,”
Int. J. Rotating Mach.
1023-621X,
2
, pp.
143
151
.
25.
Press
,
W. H.
, 1990,
Numerical Recipes
,
Cambridge University Press
,
Cambridge
.
26.
Clarich
,
A.
,
Pediroda
,
V.
, and
Poloni
,
C.
, 2006, “
Multi Attribute Design Of Airfoil Under Uncertainties By Combining Game Theory And MCDM Methods
,”
MCDM 2006 The 18th International Conference on Multiple Criteria Decision Making
,
Chania, Greece
, Jun. 19–23.
You do not currently have access to this content.