The objective of this study is to conduct laboratory experiments on low-swirl injectors (LSIs) to obtain the basic information for adapting LSI to burn H2 and diluted H2 fuels that will be utilized in the gas turbines of the integrated gasification combined cycle coal power plants. The LSI is a novel ultralow emission dry-low NOx combustion method that has been developed for gas turbines operating on natural gas. It is being developed for fuel-flexible turbines burning a variety of hydrocarbon fuels, biomass gases, and refinery gases. The adaptation of the LSI to accept H2 flames is guided by an analytical expression derived from the flow field characteristics and the turbulent flame speed correlation. The evaluation of the operating regimes of nine LSI configurations for H2 shows an optimum swirl number of 0.51, which is slightly lower than the swirl number of 0.54 for the hydrocarbon LSI. Using particle image velocimetry (PIV), the flow fields of 32 premixed H2-air and H2N2-air flames were measured. The turbulent flame speeds deduced from PIV show a linear correlation with turbulence intensity. The correlation constant for H2 is 3.1 and is higher than the 2.14 value for hydrocarbons. The analysis of velocity profiles confirms that the near field flow features of the H2 flames are self-similar. These results demonstrate that the basic LSI mechanism is not affected by the differences in the properties of H2 and hydrocarbon flames and support the feasibility of the LSI concept for hydrogen fueled gas turbines.

1.
Bell
,
J. B.
,
Cheng
,
R. K.
,
Day
,
M. S.
, and
Shepherd
,
I. G.
, 2006, “
Numerical Simulation of Lewis Number Effects on Lean Premixed Turbulent Flames
,”
Proc. Combust. Inst.
1540-7489,
31
, pp.
1309
1317
.
2.
Cheng
,
R. K.
,
Shepherd
,
I. G.
,
Bedat
,
B.
, and
Talbot
,
L.
, 2002, “
Premixed Turbulent Flame Structures in Moderate and Intense Isotropic Turbulence
,”
Combust. Sci. Technol.
0010-2202,
174
(
1
), pp.
29
59
.
3.
Shepherd
,
I. G.
,
Cheng
,
R. K.
,
Plessing
,
T.
,
Kortschik
,
C.
, and
Peters
,
N.
, 2002, “
Premixed Flame Front Structure in Intense Turbulence
,”
Proc. Combust. Inst.
1540-7489,
29
, pp.
1833
1840
.
4.
Chan
,
C. K.
,
Lau
,
K. S.
,
Chin
,
W. K.
, and
Cheng
,
R. K.
, 1992, “
Freely Propagating Open Premixed Turbulent Flames Stabilized by Swirl
,”
Proc. Combust. Inst.
1540-7489,
24
, pp.
511
518
(1992).
5.
Cheng
,
R. K.
, 1995, “
Velocity and Scalar Characteristics of Premixed Turbulent Flames Stabilized By Weak Swirl
,”
Combust. Flame
0010-2180,
101
(
1–2
), pp.
1
14
(1995).
6.
Shepherd
,
I. G.
, and
Cheng
,
R. K.
, 2001, “
The Burning Rate of Premixed Flames in Moderate and Intense Turbulence
,”
Combust. Flame
0010-2180,
127
(
3
), pp.
2066
2075
.
7.
Johnson
,
M. R.
,
Littlejohn
,
D.
,
Nazeer
,
W. A.
,
Smith
,
K. O.
, and
Cheng
,
R. K.
, 2005, “
A Comparison of the Flowfields and Emissions of High-Swirl Injectors and Low-Swirl Injectors for Lean Premixed Gas Turbines
,”
Proc. Combust. Inst.
1540-7489,
30
, pp.
2867
2874
.
8.
Nazeer
,
W. A.
,
Smith
,
K. O.
,
Sheppard
,
P.
,
Cheng
,
R. K.
, and
Littlejohn
,
D.
2006, “
Full Scale Testing of a Low Swirl Fuel Injector Concept for Ultra-Low NOx Gas Turbine Combustion Systems
,” ASME Turbo Expo 2006: Power for Land, Sea and Air, Barcelona, Spain.
9.
Cheng
,
R. K.
,
Littlejohn
,
D.
,
Nazeer
,
W. A.
, and
Smith
,
K. O.
2006, “
Laboratory Studies of the FLowfield Characteristics of Low-Swirl Injectors for Adaptation to Fuel-Flexible Turbines
,” ASME Turbo Expo 2006: Power for Land, Sea and Air, Barcelona, Spain.
10.
Yegian
,
D. T.
, and
Cheng
,
R. K.
, 1998, “
Development of a Lean Premixed Low-Swirl Burner for Low NOx Practical Applications
,”
Combust. Sci. Technol.
0010-2202,
139
(
1–6
), pp.
207
227
.
11.
Littlejohn
,
D.
, and
Cheng
,
R. K.
, 2006, “
Fuel Effects on a Low-Swirl Injector for Lean Premixed Gas Turbines
,”
Proc. Combust. Inst.
1540-7489,
31
(
2
), pp.
3155
3162
.
12.
Zhang
,
Q.
,
Noble
,
D. R.
,
Meyers
,
A.
,
Xu
,
K.
, and
Lieuwen
,
T.
, 2005, “
Characterization of Fuel Composition Effects in H2∕CO∕CH4 Mixtures Upon Lean Blowout
,” ASME Turbo Expo 2005: Power for Land, Sea and Air, Reno, NV.
13.
Mellings
,
A.
, 1997, “
Tracer Particles and Seeding for Particle Image Velocimetry
,”
Meas. Sci. Technol.
0957-0233,
8
, pp.
1406
1416
.
14.
Wernet
,
M. P.
1999, “
Fuzzy Logic Enhanced Digital PIV Processing Software
,” 18th International Congress on Instrumentation for Aerospace Simulation Facilities, Toulouse, France.
15.
Lipatnikov
,
A. N.
, and
Chomiak
,
J.
, 2002, “
Turbulent Flame Speed and Thickness: Phenomenology, Evaluation, and Application in Multi-Dimensional Simulations
,”
Prog. Energy Combust. Sci.
0360-1285,
28
(
1
),: pp.
1
74
.
16.
Kido
,
H.
,
Nakahara
,
M.
,
Hashimoto
,
J.
, and
Barat
,
D.
, 2002, “
Turbulent Burning Velocities of Two-component Fuel, Mixtures of Methane, Propane and Hydrogen
,”
JSME Int. J., Ser. B
1340-8054,
45
(
2
), pp.
355
362
.
You do not currently have access to this content.