A model is developed for determining the ideal operating point, based on maximum power output, for a thermoelectric conversion (TEC) element coupled to a combustor. In the analysis, heat recirculation from the combustor exhaust is included. Results presented here are relevant to the operating characteristics of small, combustion-driven energy systems. The model is composed of a TEC element, a combustor, a counterflow heat exchanger, and a thermal shunt resistance to the surroundings. Including the shunt is necessary due to the increased importance of this effect in small-scale thermal systems. From this combination of components, an optimal combustor operating temperature is found giving maximum power output and efficiency. The model is used to determine ideal performance figures as a function of system parameters such as the effectiveness of heat regeneration, loss of heat by conduction, and the parameters describing the thermoelectric conversion element (the so-called ZT parameter). Although a high degree of idealization is employed, the results show the importance of heat recirculation and the significance of thermal losses on system operation.

1.
Koeneman
,
P. B.
,
Busch-Vishniac
,
I. J.
, and
Wood
,
K. L.
, 1997, “
Feasibility of Micro Power Supplies for MEMS
,”
J. Microelectromech. Syst.
1057-7157,
6
(
4
), pp.
355
362
.
2.
Fernandez-Pello
,
A. C.
, 2002, “
Micro-Power Generation Using Combustion: Issues and Approaches
,”
Proceedings of the 29th International Symposium on Combustion, Sapporo, Japan
,
The Combustion Institute
,
Pittsburgh, PA
.
3.
Peterson
,
R. B.
, 2003, “
Miniature and Microscale Energy Systems
,”
Heat and Fluid Flow in Microscale and Nanoscale Structures
,
M.
Faghri
and
B.
Sunden
, eds.,
WIT P.
,
Southampton, UK
, pp.
1
43
.
4.
Dunn-Rankin
,
D.
,
Leal
,
E. M.
, and
Walther
,
D. C.
, 2005, “
Personal Power Systems
,”
Prog. Energy Combust. Sci.
0360-1285,
31
, pp.
422
465
.
5.
Park
,
C.-W.
, and
Kaviany
,
M.
, 2000, “
Combustion-Thermoelectric Tube
,”
ASME J. Heat Transfer
0022-1481,
122
, pp.
721
729
.
6.
Katsuki
,
F.
,
Tomida
,
T.
,
Nakatani
,
H.
,
Katoh
,
M.
, and
Takata
,
A.
, 2001, “
Development of a Thermoelectric Power Generation System Using Reciprocation Flow Combustion in a Porous FeSi2 Element
,”
Rev. Sci. Instrum.
0034-6748,
72
, No.
10
, pp.
3996
3999
.
7.
Schaevitz
,
S. B.
,
Franz
,
A. J.
,
Jensen
,
K. F.
, and
Schmidt
,
M. A.
, 2001, “
A Combustion-Based MEMS Thermoelectric Power Generator
,”
Proceedings of the 11th International Conference on Solid-State Sensor and Actuators
(in Digest of Technical Papers, Transducers ’01, Eurosensors XV), pp.
30
33
.
8.
Yoshida
,
K.
,
Tanaka
,
S.
,
Tomonari
,
S.
,
Satoh
,
D.
, and
Esashi
,
M.
, 2006, “
High-Energy Density Miniature Thermoelectric Generator Using Catalytic Combustion
,”
J. Microelectromech. Syst.
1057-7157,
15
, No.
1
, pp.
195
203
.
9.
Gordon
,
J. M.
, 1991, “
Generalized Power Versus Efficiency Characteristics of Heat Engines: Thermoelectric Generators as an Illustration
,”
Am. J. Phys.
0002-9505,
59
, No.
5
, pp.
551
555
.
10.
Chen
,
J.
,
Yan
,
Z.
, and
Wu
,
L.
, 1996, “
The Influence of Thomson Effect on the Maximum Power Output and Maximum Efficiency of a Thermoelectric Generator
,”
J. Appl. Phys.
0021-8979,
79
, No.
11
, pp.
8823
8828
.
11.
Bejan
,
A.
, 1997,
Advanced Engineering Thermodynamics
, 2nd ed.,
Wiley
,
New York
, pp.
665
682
.
12.
Agrawal
,
D. C.
, and
Menon
,
V. J.
, 1997, “
The Thermoelectric Generator as an Endoreversible Carnot Engine
,”
J. Phys. D
0022-3727,
30
, pp.
357
359
.
13.
Chen
,
L.
,
Sun
,
F.
, and
Wu
,
Chih
, 2005, “
Thermoelectric-Generator With Linear Phenomenological Heat-Transfer Law
,”
Appl. Energy
0306-2619,
81
, pp.
358
364
.
14.
Weinberg
,
F. J.
,
Rowe
,
D. M.
, and
Min
,
G.
, 2002, “
Novel High Perfromance Small-Scale Thermoelectric Power Generation Employing Regenerative Combustion Systems
,”
J. Phys. D
0022-3727,
35
, pp.
L61
L63
.
15.
Weinberg
,
F.
, 2004, “
Optimizing Heat Recirculating Combustion Systems for Thermoelectric Converters
,”
Combust. Flame
0010-2180,
138
, pp.
401
403
.
16.
Peterson
,
R. B.
, 2005, “
Development of an Analytical Model Useful for Micro Heat Engine Analysis
,”
Int. Commun. Heat Mass Transfer
0735-1933,
32
, pp.
884
889
.
17.
Peterson
,
R. B.
, 2005 “
A Scaling Study of a Combined Micro Combustor and Heat Engine System
,”
Power Eng. J.
0950-3366,
219
, pp.
371
381
.
18.
Peterson
,
R. B.
, 1998, “
Size Limits for Regenerative Heat Engines
,”
Microscale Thermophys. Eng.
1089-3954,
2
, pp.
121
131
.
19.
Peterson
,
R. B.
, and
Al-Hazmy
,
M.
, 1997 “
Size Limits for Stirling Cycle Refrigerators and Cryocooler
,”
Proceedings of the 32nd IECEC, Honolulu, HI
,
American Institute of Chemical Engineers
,
New York
, pp.
997
1002
.
20.
Peterson
,
R. B.
, 1999, “
Numerical Modeling of Conduction Effects in Microscale Counterflow Heat Exchangers
,”
Microscale Thermophys. Eng.
1089-3954,
3
, pp.
17
30
.
21.
Decher
,
R.
, 1997,
Direct Energy Conversion
,
Oxford University Press
,
Oxford, England
, pp.
240
252
.
22.
Angrist
,
S. W.
, 1982,
Direct Energy Conversion
, 4th ed.,
Allyn and Bacon, Inc.
,
Boston, MA
, pp.
121
171
.
23.
Goldsmid
,
H. J.
, 1995, “
Conversion Efficiency and Figure-of-Merit
,”
CRC Handbook of Thermoelectrics
,
D. M.
Rowe
, ed.,
CRC Press
,
Boca Raton, FL
, pp.
19
25
.
24.
Nolas
,
G. S.
,
Sharp
,
J.
, and
Goldsmid
,
H. J.
, 2001,
Thermoelectrics, Basic Principles and New Materials Development
,
Springer
,
Berlin
, pp.
178
191
and
235
254
.
25.
Matsuura
,
K.
, and
Rowe
,
D. M.
, 1995, “
Low-Temperature Heat Conversion
,”
CRC Handbook of Thermoelectrics
,
D. M.
Rowe
, ed.,
CRC Press
,
Boca Raton, FL
, pp.
573
593
.
26.
Bahnke
,
G. D.
, and
Howard
,
C. P.
, 1964, “
The Effects of Longitudinal Heat Conduction on Periodic-Flow Heat Exchanger Performance
,”
J. Eng. Power
0022-0825,
86
, pp.
105
120
.
27.
Peterson
,
R. B.
, and
Vanderhoff
,
J. A.
, 2001, “
Analysis of a Bayonet-Type Counterflow Heat Exchanger With Axial Conduction and Radiative Heat Loss
,”
Numer. Heat Transfer, Part A
1040-7782,
40
, pp.
203
219
.
You do not currently have access to this content.