Combustion and pollutant formation in a gas turbine combustion chamber is investigated numerically using the Eulerian particle flamelet model. The code solving the unsteady flamelet equations is coupled to an unstructured computational fluid dynamics (CFD) code providing solutions for the flow and mixture field from which the flamelet parameters can be extracted. Flamelets are initialized in the fuel-rich region close to the fuel injectors of the combustor. They are represented by marker particles that are convected through the flow field. Each flamelet takes a different pathway through the combustor, leading to different histories for the flamelet parameters. Equations for the probability of finding a flamelet at a certain position and time are additionally solved in the CFD code. To model the chemical properties of kerosene, a detailed reaction mechanism for a mixture of n-decane and 1,2,4-trimethylbenzene is used. It includes a detailed NOx submechanism and the buildup of polycyclic aromatic hydrocarbons up to four aromatic rings. The kinetically based soot model describes the formation of soot particles by inception, further growth by coagulation, and condensation as well as surface growth and oxidation. Simulation results are compared to experimental data obtained on a high-pressure rig. The influence of the model on pollutant formation is shown, and the effect of the number of flamelets on the model is investigated.

1.
Peters
,
N.
,
1984
,
Prog. Energy Combust. Sci.
,
10
, pp.
319
339
.
2.
Barths
,
H.
,
Peters
,
N.
,
Brehm
,
N.
,
Mack
,
A.
,
Pfitzner
,
M.
, and
Smiljanowski
,
V.
,
1998
,
Proc. Combust. Inst.
,
27
, pp.
1841
1847
.
3.
Coelho
,
P. J.
, and
Peters
,
N.
,
2001
,
Combust. Flame
,
124
, pp.
503
518
.
4.
Pitsch, H., Barths, H., and Peters, N., SAE paper no. 95-2357.
5.
Barths, H., Pitsch, H., and Peters, N., 1997, in Proceedings of the Third International Conference on High Performance Computing in the Automotive Industry, M. Sheh, ed., Cray Research Inc., Eagan, MN, pp. 11–18.
6.
Hasse, C., Barths, H., and Peters, N., SAE paper no. 1999-01-3547.
7.
Hergart, C. A., Barths, H., and Peters, N., SAE paper no. 1999-01-3550.
8.
Barths, H., Antoni, C., and Peters, N., SAE paper no. 98-2459.
9.
Jones, W. P., and McGuirk, J. J., 1980, in Second International Symposium on Turbulence and Shear Flows, L. J. S. Bradbury, F. Durst, B. E. Launde, F. W. Schmidt, and J. H. Whitelaw, eds., Springer-Verlag, Berlin, pp. 233–245.
10.
Jones
,
W. P.
, and
Whitelaw
,
J. H.
,
1982
,
Combust. Flame
,
48
, pp.
1
26
.
11.
Pitsch
,
H.
,
Chen
,
M.
, and
Peters
,
N.
,
1998
,
Proc. Combust. Inst.
,
27
, pp.
1057
1064
.
12.
Bikas
,
G.
, and
Peters
,
N.
,
2001
,
Combust. Flame
,
126
, pp.
1456
1471
.
13.
Bikas, G., 2001, “Kinetic Mechanisms forc Hydrocarbon Ignition,” Ph.D. thesis, Rheinisch-Westfa¨lische Technische Hochschule, Aachen, Germany.
14.
Hewson
,
J. C.
, and
Bollig
,
M.
,
1996
,
Proc. Combust. Inst.
,
26
, pp.
2171
2180
.
15.
Mauss, F., 1997, “Entwicklung eines kinetischen Modells der Rußbildung mit schneller Polymerisation,” Ph.D. thesis, Rheinisch-Westfa¨lische Technische Hochschule, Aachen, Germany.
16.
Frenklach
,
M.
, and
Warnatz
,
J.
,
1987
,
Combust. Sci. Technol.
,
51
, pp.
265
283
.
17.
Miller
,
J. A.
, and
Melius
,
C. F.
,
1992
,
Combust. Flame
,
91
, pp.
21
39
.
18.
Pitsch, H., 1997, “Modellierung der Zu¨ndung und Schadstoffbildung bei der dieselmotorischen Verbrennung mit Hilfe eines interaktiven Flamelet-Modells,” Ph.D. thesis, Rheinisch-Westfa¨lische Technische Hochschule, Aachen, Germany.
19.
Frenklach
,
M.
, and
Harris
,
S. J.
,
1987
,
J. Colloid Interface Sci.
,
118
, pp.
252
261
.
20.
Kortschik, C., private communications, 2000.
21.
Doute´
,
C.
,
Delfau
,
J. L.
,
Akrich
,
R.
, and
Vovelle
,
C.
,
1995
,
Combust. Sci. Technol.
,
106
, pp.
327
344
.
22.
Barths
,
H.
,
Hasse
,
C.
,
Bikas
,
G.
, and
Peters
,
N.
,
2000
,
Proc. Combust. Inst.
,
28
, pp.
1161
1168
.
You do not currently have access to this content.