Filtering methods are explored for removing noise from data while preserving sharp edges that many indicate a trend shift in gas turbine measurements. Linear filters are found to be have problems with removing noise while preserving features in the signal. The nonlinear hybrid median filter is found to accurately reproduce the root signal from noisy data. Simulated faulty data and fault-free gas path measurement data are passed through median filters and health residuals for the data set are created. The health residual is a scalar norm of the gas path measurement deltas and is used to partition the faulty engine from the healthy engine using fuzzy sets. The fuzzy detection system is developed and tested with noisy data and with filtered data. It is found from tests with simulated fault-free and faulty data that fuzzy trend shift detection based on filtered data is very accurate with no false alarms and negligible missed alarms.

1.
Urban, L. A., 1972, “Gas Path Analysis Applied to Turbine Engine Conditioning Monitoring,” AIAA/SAE Paper 72-1082.
2.
Volponi, A., 1983, “Gas Path Analysis:An Approach to Engine Diagnostics,” Time-Dependent Failure Mechanisms and Assessment Methodologies, Cambridge University Press, Cambridge, UK.
3.
Luppold, R. H., et al., 1989, “Estimating In-Flight Engine Performance Variations Using Kalman Filter Concepts,” AIAA Paper 89-2584.
4.
Stamatis
,
A.
, et al.
,
1991
, “
Jet Engine Fault Detection With Discrete Operating Points Gas Path Analysis
,”
J. Propul.
,
7
(
6
), pp.
1043
1048
.
5.
Kerr, L. J., et al., 1991, “Real-Time Estimation of Gas Turbine Engine Damage Using a Control Based Kalman Filter Algorithm,” ASME Paper 91-GT-216.
6.
Gallops, G. W., et al., 1992, “In-Flight Performance Diagnostic Capability of an Adaptive Engine Model,” AIAA Paper 92-3746.
7.
Volponi
,
A. J.
, and
Urban
,
L. A.
,
1992
, “
Mathematical Methods of Relative Engine Performance Diagnostics
,”
SAE Trans.
,
101
, Journal of Aerospace Technical Paper 92-2048, pp.
1
26
.
8.
Doel, D. L., 1993, “An Assessment of Weighted-Least-Squares Based Gas Path Analysis,” ASME Paper 93-GT-119.
9.
Lu
,
P. J.
,
Hsu
,
T. C.
,
Zhang
,
M. C.
, and
Zhang
,
J.
,
2001
, “
An Evaluation of Engine Fault Diagnostics Using Artificial Neural Networks
,”
ASME J. Gas Eng. Power
,
123
, pp.
240
246
.
10.
Volponi, A. J., Depold, H., Ganguli, R., and Daguang, C., 2000, “The Use of Kalman Filter and Neural Network Methodologies in Gas Turbine Performance Diagnostics: A Comparative Study,” ASME Paper 00-GT-547.
11.
DePold
,
H.
, and
Gass
,
F. D.
,
1999
, “
The Application of Expert Systems and Neural Networks to Gas Turbine Prognostics and Diagnostics
,”
ASME J. Eng. Gas Turbines Power
,
121
, pp.
607
612
.
12.
Chen
,
J.
,
Lopez-Toribio
,
C. J.
, and
Patton
,
R. J.
,
1999
, “
Nonlinear Dynamic Systems Fault Detection and Isolation Using Fuzzy Observors
,”
J. Syst. Control Eng., Part I
,
213
(
6
), pp.
467
476
.
13.
Strum, R. D., and Kirk, D. E., 1989, First Principles of Discrete Systems and Digital Signal Processing, Addison-Wesley, Reading, MA.
14.
Tham
,
M. T.
, and
Parr
,
A.
,
1994
, “
Succeed at On-Line Validation and Reconstruction of Data
,”
Chem. Eng. Prog.
,
90
(
4
), pp.
46
58
.
15.
Gallagher
, Jr.,
N. C.
, and
Wise
,
G.
,
1981
, “
Theoretical Analysis of the Properties of Median Filters
,”
IEEE Trans. Acoust., Speech, Signal Process.
,
29
, pp.
1136
1141
.
16.
Heinonen
,
P.
, and
Neuvo
,
Y.
,
1987
, “
FIR-Median Hybrid Filters
,”
IEEE Trans. Acoust., Speech, Signal Process.
,
35
, pp.
832
838
.
17.
Heinonen
,
P.
, and
Neuvo
,
Y.
,
1988
, “
FIR-Median Hybrid Filters With Predictive FIR Substructures
,”
IEEE Trans. Acoust., Speech, Signal Process.
,
36
, pp.
892
899
.
18.
Albuquerque
,
J.
, and
Biegler
,
J.
,
1995
, “
Data Reconciliation and Gross Error Detection for Dynamic Systems
,”
AIChE J.
,
42
(
10
), pp.
2841
2856
.
19.
Johnston
,
P. M.
, and
Kramer
,
M. A.
,
1995
, “
Maximum Likelihood Data Rectification: Steady State Systems
,”
AIChE J.
,
41
, pp.
2415
2421
.
20.
Karjala
,
T. W.
, and
Himmelblau
,
D. M.
,
1994
, “
Dynamic Data Rectification by Recurrent Neural Networks vs. Traditional Methods
,”
AIChE J.
,
40
, pp.
1865
1875
.
21.
Kramer
,
M. A.
,
1991
, “
Non linear Principal Components Analysis Using Auto Associative Neural Networks
,”
AIChE J.
,
37
, pp.
233
243
.
22.
Arce
,
G. R.
, et al.
,
1998
, “
Affine Order Statistic Filters: Mediatization of FIR Filters
,”
IEEE Trans. Signal Process.
,
46
(
8
), pp.
2101
2112
.
23.
Arce
,
G. R.
,
Grabowski
,
N. A.
, and
Gallagher
,
N. C.
,
2000
, “
Weighted Median Filter With Sigma-Delta Modulation Encoding
,”
IEEE Trans. Signal Process.
,
48
(
2
), pp.
489
498
.
24.
Zadeh
,
L.
,
1996
, “
Fuzzy Logic=Computing With Words
,”
IEEE Trans. Fuzzy Syst.
,
4
(
2
), pp.
103
111
.
25.
Volponi
,
A. J.
,
1999
, “
Gas Turbine Parameter Corrections
,”
ASME J. Eng. Gas Turbines Power
,
121
, pp.
613
621
.
26.
Gonzales, R. C., and Woods, R. E., 1992, Digital Image Processing, Addison-Wesley, Reading, MA.
27.
Chi, Z., Yan, H., and Pham, T., 1998, Fuzzy Algorithms: With Applications to Image Processing and Pattern Recognition, World Scientific, Singapore.
28.
Therrien, C. W., 1989, Decision Estimation and Classification: An Introduction to Pattern Recognition and Related Topics, John Wiley and Sons, New York.
29.
Kosko, B., 1997, Fuzzy Engineering, Prentice-Hall, Englewood Cliffs, NJ.
You do not currently have access to this content.