Abstract

This study uses computational methods to investigate the fluid flow characteristics around a wavy NACA 63(4)-021 hydrofoil near the water surface. It introduces notable contributions to the literature on sinusoidal edge hydrofoils by examining the behavior of this specific hydrofoil configuration close to the water surface, a previously unexplored aspect. Furthermore, the study presents a comprehensive review and analysis of various machine learning (ML) techniques applied to computational fluid dynamics (CFD) and experimental data, offering a novel approach in this field. The three-dimensional Reynolds-averaged Navier–Stokes (RANS) equations are solved using an implicit finite volume approach to simulate the turbulent flow around the hydrofoil near the free surface. The realizable k–ε turbulence model accounts for turbulent flow effects at varying submergence depths. Four machine learning models in Python are developed to predict lift and drag coefficients. Evaluation of these models on training and test datasets reveals that xgboost achieves the highest accuracy, with an impressive R2 score of 0.9775 on the test dataset. Therefore, xgboost is recommended as the optimal model for future applications in this context. The study's findings are presented for the wavy hydrofoil at three submergence depths and three angles of attack (AOA). Key results include wave profiles, magnitudes, total pressure contours around the hydrofoil and free surface, and pressure, lift, and drag coefficients. The accuracy of the numerical simulations is validated by comparing the results with available experimental data, demonstrating good agreement between the two.

References

1.
Wosnik
,
M.
,
Schauer
,
T. J.
, and
Arndt
,
R. E. A.
,
2003
, “
Experimental Study of a Ventilated Supercavitating Vehicle
,” Fifth International Symposium on Cavitation, Osaka, Japan, Nov. 1, pp.
1
4
.
2.
Ahn
,
B.-K.
,
Lee
,
T.-K.
,
Kim
,
H.-T.
, and
Lee
,
C.-S.
,
2012
, “
Experimental Investigation of Supercavitating Flows
,”
Int. J. Nav. Archit. Ocean Eng.
,
4
(
2
), pp.
123
131
.10.2478/IJNAOE-2013-0083
3.
Hong
,
J.-W.
,
Jeong
,
S.-W.
, and
Ahn
,
B.-K.
,
2019
, “
PIV Measurements of Non-Cavitating and Cavitating Flow in Wake of Two-Dimensional Wedge-Shaped Submerged Body
,”
J. Ocean Eng. Technol.
,
33
(
1
), pp.
26
32
.10.26748/KSOE.2018.066
4.
Lian
,
Q.-X.
, and
Huang
,
Z.
,
1989
, “
Starting Flow and Structures of the Starting Vortex Behind Bluff Bodies With Sharp Edges
,”
Exp. Fluids
,
8
(
1–2
), pp.
95
103
.10.1007/BF00203070
5.
Salvesen
,
N.
, and
Von Kerczek
,
C. H.
,
1975
, “
Numerical Solutions of Two-Dimensional Nonlinear Body-Wave Problems
,”
Proceedings of International Conference on Numerical Ship Hydrodynamics
, MD, Oct. 20, pp.
279
293
.
6.
Hirt
,
C. W.
, and
Nichols
,
B. D.
,
1981
, “
Volume of Fluid (VOF) Method for the Dynamics of Free Boundaries
,”
J. Comput. Phys.
,
39
(
1
), pp.
201
225
.10.1016/0021-9991(81)90145-5
7.
Di Mascio
,
A.
,
Broglia
,
R.
, and
Muscari
,
R.
,
2007
, “
On the Application of the Single-Phase Level Set Method to Naval Hydrodynamic Flows
,”
Comput. Fluids
,
36
(
5
), pp.
868
886
.10.1016/j.compfluid.2006.08.001
8.
Karim
,
M. M.
,
Prasad
,
B.
, and
Rahman
,
N.
,
2014
, “
Numerical Simulation of Free Surface Water Wave for the Flow Around NACA 0015 Hydrofoil Using the Volume of Fluid (VOF) Method
,”
Ocean Eng.
,
78
, pp.
89
94
.10.1016/j.oceaneng.2013.12.013
9.
Prasad
,
B.
,
Hino
,
T.
, and
Suzuki
,
K.
,
2015
, “
Numerical Simulation of Free Surface Flows Around Shallowly Submerged Hydrofoil by OpenFOAM
,”
Ocean Eng.
,
102
, pp.
87
94
.10.1016/j.oceaneng.2015.04.049
10.
Uddin
,
M. I.
, and
Karim
,
M. M.
,
2017
, “
Application of Volume of Fluid (VOF) Method for Prediction of Wave Generated by Flow Around Cambered Hydrofoil
,”
Procedia Eng.
,
194
, pp.
82
89
.10.1016/j.proeng.2017.08.120
11.
Liu
,
Z.
,
Qu
,
H.
, and
Shi
,
H.
,
2019
, “
Numerical Study on Hydrodynamic Performance of a Fully Passive Flow-Driven Pitching Hydrofoil
,”
Ocean Eng.
,
177
, pp.
70
84
.10.1016/j.oceaneng.2019.01.055
12.
Gutierrez-Amo
,
R.
,
Fernandez-Gamiz
,
U.
,
Errasti
,
I.
, and
Zulueta
,
E.
,
2018
, “
Computational Modelling of Three Different Sub-Boundary Layer Vortex Generators on a Flat Plate
,”
Energies
,
11
(
11
), p.
3107
.10.3390/en11113107
13.
Ni
,
Z.
,
Dhanak
,
M.
, and
Su
,
T.
,
2021
, “
Performance of a Hydrofoil Operating Close to a Free Surface Over a Range of Angles of Attack
,”
Int. J. Nav. Archit. Ocean Eng.
,
13
, pp.
1
11
.10.1016/j.ijnaoe.2020.11.002
14.
Li
,
T.
, and
Shen
,
L.
,
2022
, “
The Principal Stage in Wind-Wave Generation
,”
J. Fluid Mech.
,
934
, p.
A41
.10.1017/jfm.2021.1153
15.
Pendar
,
M.-R.
,
Alavi
,
A.
, and
Roohi
,
E.
,
2023
, “
Identification of Frequency Modes and Spectral Content for Noise Suppression: Cavitation Flow Over 3-D Hydrofoil With Sinusoidal Leading Edge
,”
Int. J. Mod. Phys. C
,
34
(
06
), p. 2350074.10.1142/S0129183123500742
16.
Pendar
,
M.-R.
,
Esmaeilifar
,
E.
, and
Roohi
,
E.
,
2020
, “
LES Study of Unsteady Cavitation Characteristics of a 3-D Hydrofoil With Wavy Leading Edge
,”
Int. J. Multiph. Flow
,
132
, p.
103415
.10.1016/j.ijmultiphaseflow.2020.103415
17.
Zhao
,
X.
,
Cheng
,
H.
, and
Ji
,
B.
,
2022
, “
LES Investigation of the Cavitating Hydrofoils With Various Wavy Leading Edges
,”
Ocean Eng.
,
243
, p.
110331
.10.1016/j.oceaneng.2021.110331
18.
Pendar
,
M.-R.
, and
Páscoa
,
J. C.
,
2022
, “
Numerical Investigation of Plasma Actuator Effects on Flow Control Over a Three-Dimensional Airfoil With a Sinusoidal Leading Edge
,”
ASME J. Fluids Eng.
,
144
(
8
), p.
081208
.10.1115/1.4053847
19.
Brunton
,
S. L.
,
Noack
,
B. R.
, and
Koumoutsakos
,
P.
,
2020
, “
Machine Learning for Fluid Mechanics
,”
Annu. Rev. Fluid Mech.
,
52
(
1
), pp.
477
508
.10.1146/annurev-fluid-010719-060214
20.
Duriez
,
T.
,
Brunton
,
S. L.
, and
Noack
,
B. R.
,
2017
,
Machine Learning Control-Taming Nonlinear Dynamics and Turbulence
,
Springer
, Cham, Switzerland.
21.
Kaul
,
U. K.
,
2023
, “
A Machine Learning Approach to Predicting Unsteady Transonic Flow of Pitching Airfoils
,”
ASME J. Fluids Eng.
,
145
(
2
), p.
021501
.10.1115/1.4055911
22.
Kaul
,
U. K.
,
2021
, “
Resolving Pitching Airfoil Transonic Aerodynamics by Computational Fluid Dynamics Data Modeling
,”
ASME J. Fluids Eng.
,
143
(
9
), p.
091501
.10.1115/1.4050800
23.
Wu
,
Z.-N.
, and
Fu
,
S.
,
2002
, “
Positivity of K-Epsilon Turbulence Models for Incompressible Flow
,”
Math. Model. Methods Appl. Sci.
,
12
(
03
), pp.
393
406
.10.1142/S0218202502001702
24.
Weller
,
H. G.
,
Tabor
,
G.
,
Jasak
,
H.
, and
Fureby
,
C.
,
1998
, “
A Tensorial Approach to Computational Continuum Mechanics Using Object-Oriented Techniques
,”
Comput. Phys.
,
12
(
6
), pp.
620
631
.10.1063/1.168744
25.
Fish
,
F. E.
, and
Battle
,
J. M.
,
1995
, “
Hydrodynamic Design of the Humpback Whale Flipper
,”
J. Morphol.
,
225
(
1
), pp.
51
60
.10.1002/jmor.1052250105
26.
Duncan
,
J. H.
,
1983
, “
The Breaking and Non-Breaking Wave Resistance of a Two-Dimensional Hydrofoil
,”
J. Fluid Mech.
,
126
, pp.
507
520
.10.1017/S0022112083000294
27.
Chen
,
W.
,
Sharifrazi
,
D.
,
Liang
,
G.
,
Band
,
S. S.
,
Chau
,
K. W.
, and
Mosavi
,
A.
,
2022
, “
Accurate Discharge Coefficient Prediction of Streamlined Weirs by Coupling Linear Regression and Deep Convolutional Gated Recurrent Unit
,”
Eng. Appl. Comput. Fluid Mech.
,
16
(
1
), pp.
965
976
.10.1080/19942060.2022.2053786
28.
Barelle
,
C.
,
Ruby
,
A.
, and
Tavernier
,
M.
,
2004
, “
Experimental Model of the Aerodynamic Drag Coefficient in Alpine Skiing
,”
J. Appl. Biomech.
,
20
(
2
), pp.
167
176
.10.1123/jab.20.2.167
29.
Mahdiani
,
M. R.
,
Khamehchi
,
E.
,
Hajirezaie
,
S.
, and
Hemmati-Sarapardeh
,
A.
,
2020
, “
Modeling Viscosity of Crude Oil Using K-Nearest Neighbor Algorithm
,”
Adv. Geo-Energy Res.
,
4
(
4
), pp.
435
447
.10.46690/ager.2020.04.08
30.
Al-Qahtani
,
F. H.
, and
Crone
,
S. F.
,
2013
, “
Multivariate K-Nearest Neighbour Regression for Time Series Data — A Novel Algorithm for Forecasting UK Electricity Demand
,”
International Joint Conference on Neural Networks
(
IJCNN
), Dallas, TX, Aug. 4–9, pp.
1
8
.10.1109/IJCNN.2013.6706742
31.
Larrañaga
,
A.
,
Brunton
,
S. L.
,
Martínez
,
J.
,
Chapela
,
S.
, and
Porteiro
,
J.
,
2023
, “
Data-Driven Prediction of the Performance of Enhanced Surfaces From an Extensive CFD-Generated Parametric Search Space
,”
Mach. Learn. Sci. Technol.
,
4
(
2
), p.
25012
.10.1088/2632-2153/acca60
32.
Hu
,
G.
, and
Kwok
,
K. C. S.
,
2020
, “
Predicting Wind Pressures Around Circular Cylinders Using Machine Learning Techniques
,”
J. Wind Eng. Ind. Aerodyn.
,
198
, p.
104099
.10.1016/j.jweia.2020.104099
33.
Li
,
B.
,
Yang
,
Z.
,
Zhang
,
X.
,
He
,
G.
,
Deng
,
B.-Q.
, and
Shen
,
L.
,
2020
, “
Using Machine Learning to Detect the Turbulent Region in Flow Past a Circular Cylinder
,”
J. Fluid Mech.
,
905
, p.
A10
.10.1017/jfm.2020.725
34.
Chen
,
Z.-M.
,
2012
, “
A Vortex Based Panel Method for Potential Flow Simulation Around a Hydrofoil
,”
J. Fluids Struct.
,
28
, pp.
378
391
.10.1016/j.jfluidstructs.2011.10.003
35.
Hu
,
J.
,
Guo
,
L.
, and
Sun
,
S.
,
2018
, “
Numerical Simulation of the Potential Flow Around a Submerged Hydrofoil With Fully Nonlinear Free-Surface Conditions
,”
J. Coast. Res.
,
341
(
1
), pp.
238
252
.10.2112/JCOASTRES-D-16-00153.1
36.
Custodio
,
D.
,
Henoch
,
C. W.
, and
Johari
,
H.
,
2015
, “
Aerodynamic Characteristics of Finite Span Wings With Leading-Edge Protuberances
,”
AIAA J.
,
53
(
7
), pp.
1878
1893
.10.2514/1.J053568
37.
Hrynuk
,
J. T.
, and
Bohl
,
D. G.
,
2020
, “
The Effects of Leading-Edge Tubercles on Dynamic Stall
,”
J. Fluid Mech.
,
893
, p.
A5
.10.1017/jfm.2020.216
38.
Kouh
,
J. S.
,
2002
, “
Performance Analysis of Two-Dimensional Hydrofoil Under Free Surface
,”
J. Eng. Natl. Taiwan Univ.
,
86
, pp.
113
123
.https://cir.nii.ac.jp/crid/1574231874038165632
39.
Yeung
,
R. W.
, and
Bouger
,
Y. C.
,
1979
, “
A Hybrid Integral-Equation Method for Steady Two-Dimensional Ship Waves
,”
Int. J. Numer. Methods Eng.
,
14
(
3
), pp.
317
336
.10.1002/nme.1620140303
You do not currently have access to this content.