Abstract

Pipe bends are commonly used in piping systems in offshore and subsea installations. The present study explores the design considerations for the honeycomb straightener inserted downstream of a 90-degree pipe bend. The objective of the study is to evaluate the effectiveness of the honeycomb in suppressing the flow swirling for different distances from the bend outlet (Lb) and different values of the honeycomb thickness (t). The turbulent flow through the 90-degree circular pipe bend with the honeycomb straightener is investigated by carrying out numerical simulations using the Reynolds-averaged Navier–Stokes (RANS) turbulence modeling approach. The explicit Algebraic Reynolds Stress Model (EARSM) is adopted to resolve the Reynolds stresses. The honeycomb thickness to pipe diameter ratio (t/D) is varied between 0.1 and 1. The normalized distance from the bend outlet to the honeycomb straightener (Lb/D) is varied between 1 and 5. The disturbance in the velocity field is generated by the pipe bend with the curvature radius to pipe diameter ratio (Rc/D) of 2 and Reynolds number (Re) of 2 × 105. It is found that both the increase in Lb/D and t/D improve the performance of the device in removing the swirl behind the bend outlet. The best performance is observed for the honeycomb straightener with the distance Lb/D=5 and thickness t/D=0.5.

References

1.
ISO 5167-1
,
2003
, “
Measurement of fluid flow by Means of Pressure Differential Devices Inserted in Circular Cross-Section Conduits Running Full—Part 1: General Principle and Requirements, Annex C
,” International Organization for Standardization (ISO), Geneva, Switzerland.
2.
Baker
,
R. C.
,
2000
,
Flow Measurement Handbook: Industrial Designs, Operating Principles, Performance, and Applications
, 1st ed.,
Cambridge University Press
,
Cambridge, UK
, pp.
24
41
.
3.
Miller
,
R. W.
,
1996
,
Flow Measurement Engineering Handbook
, 3d ed.,
McGraw-Hill
,
New York,
pp.
250
270
.
4.
Chigier
,
N. A.
, and
Beér
,
J. M.
,
1964
, “
Velocity and Static-Pressure Distributions in Swirling Air Jets Issuing From Annular and Divergent Nozzles
,”
ASME J. Basic Eng.
,
86
(
4
), pp.
788
796
.10.1115/1.3655954
5.
Laws
,
E. M.
,
1990
, “
Flow Conditioning–A New Development
,”
Flow Meas. Instrum.
,
1
(
3
), pp.
165
170
.10.1016/0955-5986(90)90006-S
6.
Baker
,
R. C.
,
1993
, “
Field Use of K-Lab Flow Conditioner, by I. P. Bates, Total Oil Marine
,”
Flow Meas. Instrum.
,
4
(
3
), pp.
187
189
(Proceedings of the North Sea Flow Measurement Workshop 1991: Norwegian Society of Chartered Engineers).10.1016/0955-5986(93)90055-N
7.
Mattingly
,
C. E.
, and
Yeh
,
T. T.
,
1991
, “
Effects of Pipe Elbows and Tube Bundles on Selected Types of Flowmeters
,”
Flow Meas. Instrum.
,
2
(
1
), pp.
4
13
.10.1016/0955-5986(91)90050-2
8.
Yin
,
G.
,
Ong
,
M. C.
, and
Zhang
,
P.
,
2023
, “
Numerical Investigations of Pipe Flow Downstream a Flow Conditioner With Bundle of Tubes
,”
Eng. Appl. Comput. Fluid Mech.
,
17
(
1
), p.
e2154850
.10.1080/19942060.2022.2154850
9.
Kinghorn
,
F. C.
,
McHugh
,
A.
, and
Dyet
,
W. D.
,
1991
, “
The Use of Etoile Flow Straighteners With Orifice Plates in Swirling Flow
,”
Flow Meas. Instrum.
,
2
(
3
), pp.
162
168
.10.1016/0955-5986(91)90028-P
10.
Laws
,
E. M.
, and
Ouazzane
,
A.
,
1992
, “
Effect of Plate Depth on the Performance of a Zanker Flow Straightener
,”
Flow Meas. Instrum.
,
3
(
4
), pp.
257
269
.10.1016/0955-5986(92)90024-Y
11.
Ouazzane
,
A. K.
, and
Benhadj
,
R.
,
2002
, “
Flow Conditioners Design and Their Effects in Reducing Flow Metering Errors
,”
Sensor Rev.
,
22
(
3
), pp.
223
231
.10.1108/02602280210433061
12.
Laribi
,
B.
,
Wauters
,
P.
, and
Aichouni
,
M.
, “
Experimental Study of Aerodynamic Behavior Downstream of Three Flow Conditioners
,”
ASME
Paper No. FEDSM2002-31080. 10.1115/FEDSM2002-31080
13.
Hogendoorn
,
J.
,
Boer
,
A.
, and
Laan
,
D.
,
2005
, “
Flow Disturbances and Flow Conditioners: The Effect on Multi-Beam Ultrasonic Flow Meters
,”
Proceedings of the Conference: 23. North Sea Flow Measurement Workshop
,
Oslo, Norway
,
18–21 Oct
., pp.
241
252
.
14.
Erdal
,
A.
,
Sivertsen
,
A. S.
,
Langsholt
,
M.
, and
Andersson
,
H. A.
,
1996
, “
Three-Dimensional Computation of Turbulent Flow Through a Flow Conditioner
,” Proceedings of the 8th International Conference on Flow Measurement, Flomeko'96, Beijing, China, Oct. 20–24, pp.
718
723
.
15.
Vaidya
,
H. A.
,
Ertunc
,
O.
,
Genc
,
B.
,
Beyer
,
F.
,
Koksoy
,
C.
, and
Delgado
,
A.
,
2011
, “
Numerical Simulations of Swirling Pipe Flows-Decay of Swirl and Occurrence of Vortex Structure
,”
J. Phys. Conf. Ser.
,
318
(
6
), p.
062022
.10.1088/1742-6596/318/6/062022
16.
Kim
,
J.
,
Yadav
,
M.
, and
Kim
,
S.
,
2014
, “
Characteristics of Secondary Flow Induced by 90-Degree Elbow in Turbulent Pipe Flow
,”
Eng. Appl. Comput. Fluid Mech.
,
8
(
2
), pp.
229
239
.10.1080/19942060.2014.1101550
17.
Rahmatullah
,
B.
,
Tamrin
,
K. F.
, and
Sheikh
,
N. A.
,
2016
, “
Numerical Analysis of Swirl Intensity in Turbulent Swirling Pipe Flows
,”
Jurnal Teknologi
,
78
(
5–10
), pp.
133
141
.10.11113/jt.v78.8845
18.
Yehia
,
A.
,
Khalid
,
M. S.
,
Hossam
,
S. A.
, and
Jaafar
,
M. N.
,
2009
, “
CFD Analysis of Incompressible Turbulent Swirling Flow Through Zanker Plate
,”
Eng. Appl. Comput. Fluid Mech
,
3
(
4
), pp.
562
572
.10.1080/19942060.2009.11015291
19.
Hallanger
,
A.
, 25 October
2002
, “
Paper 6.3 CFD Analyses of the Influence of Flow Conditioners on Liquid Ultrasonic Flowmetering
,”
Oseberg Sor – A Case Study. North Sea Flow Measurement Workshop
,
1
,
Christian Michelsen Research AS
,
Bergen, Norway, 22
, pp.
1
10
.
20.
Askari
,
V.
,
Nicolas
,
D.
,
Edralin
,
M.
, and
Jang
,
C.
,
2019
, “
Computational Fluid Dynamics Model for Sensitivity Analysis and Design of Flow Conditioners
,”.
Proceedings of the Ninth International Conference on Simulation and Modeling Methodologies, Technologies and Applications–SIMULTECH
,
Prague, Czech Republic
,
29–31 July
, pp.
129
140
.10.5220/0007917401290140
21.
Spearman
,
E. P.
,
Sattary
,
J. A.
, and
Reader-Harris
,
M. J.
,
1996
, “
Comparison of Velocity and Turbulence Profiles Downstream of Perforated Plate Flow Conditioners
,”
Flow Meas. Instrum.
,
7
(
3–4
), pp.
181
199
.10.1016/S0955-5986(96)00013-1
22.
Kulkarni
,
V.
,
Sahoo
,
N.
, and
Chavan
,
S. D.
,
2011
, “
Simulation of Honeycomb-Screen Combinations for Turbulence Management in a Subsonic Wind Tunnel
,”
J. Wind Eng. Ind. Aerodyn.
,
99
(
1
), pp.
37
45
.10.1016/j.jweia.2010.10.006
23.
Lumley
,
J. L.
, and
McMahon
,
J. F.
,
1967
, “
Reducing Water Tunnel Turbulence by Means of a Honeycomb
,”
ASME J. Fluids Eng.
,
89
(
4
), pp.
764
770
.10.1115/1.3609700
24.
Kühnen
,
J.
,
Scarselli
,
D.
, and
Hof
,
B.
,
2019
, “
Relaminarization of pipe flow by Means of 3D-Printed Shaped Honeycombs
,”
ASME J. Fluids Eng
,
141
(
11
), p.
111105
.10.1115/1.4043494
25.
Wallin
,
S.
, and
Johansson
,
A. V.
,
2000
, “
An Explicit Algebraic Reynolds Stress Model for Incompressible and Compressible Turbulent Flows
,”
J. Fluid Mech.
,
403
, pp.
89
132
.10.1017/S0022112099007004
26.
Jurga
,
A. P.
,
Janocha
,
M. J.
,
Yin
,
G.
,
Giljarhus
,
K. E. T.
, and
Ong
,
M. C.
,
2021
, “
Validation and Assessment of Different RANS Turbulence Models for Simulating Turbulent Flow Through an Orifice Plate
,”
IOP Conf. Ser.: Mater. Sci. Eng.
,
1201
(
1
), p.
012019
. 10.1088/1757-899X/1201/1/012019
27.
Launder
,
B. E.
, and
Spalding
,
D. B.
,
1983
, “
The Numerical Computation of Turbulent Flows
,”
Numerical Prediction of Flow, Heat Transfer, Turbulence and Combustion
, Elsevier,
Pergamon, Turkey
, pp.
96
116
.
28.
Launder
,
B. E.
, and
Sharma
,
B. I.
,
1974
, “
Application of the Energy-Dissipation Model of Turbulence to the Calculation of Flow Near a Spinning Disc
,”
Lett. Heat Mass Transfer
,
1
(
2
), pp.
131
137
.10.1016/0094-4548(74)90150-7
29.
Yakhot
,
V.
,
Orszag
,
S. A.
,
Thangam
,
S.
,
Gatski
,
T. B.
, and
Speziale
,
C.
,
1992
, “
Development of Turbulence Models for Shear Flows by a Double Expansion Technique
,”
Phys. Fluids A: Fluid Dyn.
,
4
(
7
), pp.
1510
1520
.10.1063/1.858424
30.
Shih
,
T. H.
,
Liou
,
W. W.
,
Shabbir
,
A.
,
Yang
,
Z.
, and
Zhu
,
J.
,
1995
, “
A New k-ϵ Eddy Viscosity Model for High Reynolds Number Turbulent Flows
,”
Comput. Fluids
,
24
(
3
), pp.
227
238
.10.1016/0045-7930(94)00032-T
31.
Menter
,
F. R.
,
1994
, “
Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications
,”
AIAA J.
,
32
(
8
), pp.
1598
1605
.10.2514/3.12149
32.
Langtry
,
R. B.
, and
Menter
,
F. R.
,
2009
, “
Correlation-Based Transition Modeling for Unstructured Parallelized Computational Fluid Dynamics Codes
,”
AIAA J.
,
47
(
12
), pp.
2894
2906
.10.2514/1.42362
33.
Lien
,
F. S.
,
1996
, “
Low-Reynolds-Number Eddy-Viscosity Modelling Based on Non-Linear Stress-Strain/Vorticity Relations
,”
Proceedings of third Symposium on Engineering Turbulence Modelling and Measurements,
Greece, May 27–29, pp.
1
10
.
34.
Jurga
,
A. P.
,
Janocha
,
M. J.
,
Yin
,
G.
, and
Ong
,
M. C.
,
2022
, “
Numerical Simulations of Turbulent Flow Through a 90-Degree Pipe Bend
,”
ASME J. Offshore Mech. Arct. Eng.
,
144
(
6
), p.
061801
.10.1115/1.4054960
35.
Hellsten
,
A.
,
2005
, “
New Advanced k-Omega Turbulence Model for High-Lift Aerodynamics
,”
ASME AIAA J.
,
43
(
9
), pp.
1857
1869
.10.2514/1.13754
36.
Andersen
,
M.
,
Yin
,
G.
, and
Ong
,
M. C.
,
2021
, “
Numerical Simulations of Flow Around Wall-Mounted Square and Trapezoidal Structures at High Reynolds Numbers
,”
ASME J. Offshore Mech. Arct. Eng.
,
143
(
1
), p.
011902
.10.1115/1.4047541
You do not currently have access to this content.