Abstract

Pipe networks exhibit complex geometries and are equipped with electromechanical devices capable of generating hydraulic transients. Most of these devices are remotely controlled and managed through an integrated system that prioritizes network demands. This implies that potential hazardous pressure peaks, that may occur during each operation, may need to be taken into account. Consequently, when multiple operations take place in a short time interval, transient pressure waves, generated in different parts of the network and traveling back and forward, overlap and can be larger than the design maximum pressure. To address this concern, it is essential to evaluate the pressure-damping rate of critical maneuvers and to identify a “safe” time interval between maneuvers to prevent the risk of inappropriate pressure waves overlapping. With the aim of analyzing the damping rate of closure maneuvers, both numerical and laboratory experiments have been executed for a laminar flow in a reservoir-pipe-valve system. In this context, a three-dimensional computational fluid dynamics, a one-dimensional and global model, the latter based on a sinusoidal function, have been used. Guidelines are then presented for identifying the safe time interval between maneuvers.

References

1.
Brunone
,
B.
, and
Morelli
,
L.
,
1999
, “
Automatic Control Valve–Induced Transients in Operative Pipe System
,”
J. Hydraul. Eng.
,
125
(
5
), pp.
534
542
.10.1061/(ASCE)0733-9429(1999)125:5(534)
2.
Karney
,
B. W.
, and
McInnis
,
D.
,
1990
, “
Transient Analysis of Water Distribution Systems
,”
Am. Water Works Assoc.
,
82
(
7
), pp.
62
70
.10.1002/j.1551-8833.1990.tb06992.x
3.
Ormsbee
,
L. E.
, and
Lansey
,
K. E.
,
1994
, “
Optimal Control of Water Supply Pumping Systems
,”
J. Water Resour. Plann. Manage.
,
120
(
2
), pp.
237
252
.10.1061/(ASCE)0733-9496(1994)120:2(237)
4.
Meniconi
,
S.
,
Brunone
,
B.
, and
Ferrante
,
M.
,
2012
, “
Water-Hammer Pressure Waves Interaction at Cross-Section Changes in Series in Viscoelastic Pipes
,”
J. Fluid Struct.
,
33
, pp.
44
58
.10.1016/j.jfluidstructs.2012.05.007
5.
Meniconi
,
S.
,
Brunone
,
B.
, and
Frisinghelli
,
M.
,
2018
, “
On the Role of Minor Branches, Energy Dissipation, and Small Defects in the Transient Response of Transmission Mains
,”
Water-Sui
,
10
(
2
), p.
187
.10.3390/w10020187
6.
Ayati
,
A. H.
,
Haghighi
,
A.
, and
Lee
,
P. J.
,
2019
, “
Statistical Review of Major Standpoints in Hydraulic Transient-Based Leak Detection
,”
J. Hydraulic Struct.
,
5
(
1
), pp.
1
26
.10.22055/JHS.2019.27926.1095
7.
Brunone
,
B.
,
Capponi
,
C.
, and
Meniconi
,
S.
,
2021
, “
Design Criteria and Performance Analysis of a Smart Portable Device for Leak Detection in Water Transmission Mains
,”
Measurement
,
183
, p.
109844
.10.1016/j.measurement.2021.109844
8.
Che
,
T.-C.
,
Duan
,
H.-F.
, and
Lee
,
P. J.
,
2021
, “
Transient Wave-Based Methods for Anomaly Detection in Fluid Pipes: A Review
,”
Mech. Syst. Signal Process.
,
160
, p.
107874
.10.1016/j.ymssp.2021.107874
9.
Colombo
,
A. F.
,
Lee
,
P.
, and
Karney
,
B. W.
,
2009
, “
A Selective Literature Review of Transient-Based Leak Detection Methods
,”
J. Hydro-Environment Res.
,
2
(
4
), pp.
212
227
.10.1016/j.jher.2009.02.003
10.
Xu
,
X.
, and
Karney
,
B. W.
,
2017
, “
An Overview of Transient Fault Detection Techniques
,”
Modeling and Monitoring of Pipelines and Networks
, Advanced Tools for Automatic Monitoring and Supervision of Pipelines,
C.
Verde
, and
L.
Torres
, eds.,
Springer
,
Cham, Switzerland
, pp.
13
37
.
11.
Creaco
,
E.
,
Pezzinga
,
G.
, and
Savic
,
D.
,
2017
, “
On the Choice of the Demand and Hydraulic Modeling Approach to WDN Real-Time Simulation
,”
Water Resour. Res.
,
53
(
7
), pp.
6159
6177
.
12.
Marsili
,
V.
,
Meniconi
,
S.
,
Alvisi
,
S.
,
Brunone
,
B.
, and
Franchini
,
M.
,
2021
, “
Experimental Analysis of the Water Consumption Effect on the Dynamic Behaviour of a Real Pipe Network
,”
J. Hydraul. Res.
,
59
(
3
), pp.
477
487
.10.1080/00221686.2020.1780506
13.
Meniconi
,
S.
,
Maietta
,
F.
,
Alvisi
,
S.
,
Capponi
,
C.
,
Marsili
,
V.
,
Franchini
,
M.
, and
Brunone
,
B.
,
2022
, “
Consumption Change‐Induced Transients in a Water Distribution Network: Laboratory Tests in a Looped System
,”
Water Resour. Res.
,
58
(
10
), p.
e2021WR031343
.
14.
Meniconi
,
S.
,
Brunone
,
B.
,
Mazzetti
,
E.
,
Laucelli
,
D. B.
, and
Borta
,
G.
,
2017
, “
Hydraulic Characterization and Transient Response of Pressure Reducing Valves: Laboratory Experiments
,”
J. Hydroinform.
,
19
(
6
), pp.
798
810
.10.2166/hydro.2017.158
15.
Pezzinga
,
G.
,
Brunone
,
B.
,
Cannizzaro
,
D.
,
Ferrante
,
M.
,
Meniconi
,
S.
, and
Berni
,
A.
,
2014
, “
Two-Dimensional Features of Viscoelastic Models of Pipe Transients
,”
J. Hydraul. Eng.
,
140
(
8
), p.
04014036
.10.1061/(ASCE)HY.1943-7900.0000891
16.
Brunone
,
B.
, and
Golia
,
U. M.
,
2008
, “
Discussion of “Systematic Evaluation of One-Dimensional Unsteady Friction Models in Simple Pipelines” by J. P. Vitkovsky, A. Bergant, A. R. Simpson, and M. F. Lambert
,”
J. Hydraul. Eng.
,
134
(
2
), pp.
282
284
.10.1061/(ASCE)0733-9429(2008)134:2(282)
17.
Ghidaoui
,
M. S.
,
Zhao
,
M.
,
McInnis
,
D. A.
, and
Axworthy
,
D. H.
,
2005
, “
A Review of Water Hammer Theory and Practice
,”
ASME Appl. Mech. Rev.
,
58
(
1
), pp.
49
76
.10.1115/1.1828050
18.
Martins
,
N. M. C.
,
Soares
,
A. K.
,
Ramos
,
H. M.
, and
Covas
,
D. I. C.
,
2016
, “
CFD Modeling of Transient Flow in Pressurized Pipes
,”
Comput Fluids
,
126
, pp.
129
140
.10.1016/j.compfluid.2015.12.002
19.
Li
,
J.
,
Wu
,
P.
, and
Yang
,
J.
,
2010
, “
CFD Numerical Simulation of Water Hammer in Pipeline Based on the Navier-Stokes Equation
,”
Fifth European Conference on Computational Fluid Dynamics ECCOMAS CFD, Lisbon
, Portugal.
20.
Murasiewicz
,
H.
, and
Jaworski
,
Z.
,
2009
, “
Transient CFD Simulations of Turbulent Liquid - Liquid Flow in a Kenics Static Mixer. Radial and Tangential Velocities
,”
Pol. J. Chem. Technol.
,
11
(
2
), pp.
36
40
.10.2478/v10026-009-0021-2
21.
Martins
,
N. M. C.
,
Brunone
,
B.
,
Meniconi
,
S.
,
Ramos
,
H. M.
, and
Covas
,
D. I. C.
,
2017
, “
CFD and 1D Approaches for the Unsteady Friction Analysis of Low Reynolds Number Turbulent Flows
,”
J. Hydraul. Eng.
,
143
(
12
), p.
04017050
.10.1061/(ASCE)HY.1943-7900.0001372
22.
Martins
,
N. M. C.
,
Delgado
,
J. N.
,
Ramos
,
H. M.
, and
Covas
,
D. I. C.
,
2017
, “
Maximum Transient Pressures in a Rapidly Filling Pipeline With Entrapped Air Using a CFD Model
,”
J. Hydraul. Res.
,
55
(
4
), pp.
506
519
.10.1080/00221686.2016.1275046
23.
Martins
,
N. M. C.
,
Brunone
,
B.
,
Meniconi
,
S.
,
Ramos
,
H. M.
, and
Covas
,
D. I. C.
,
2018
, “
Efficient Computational Fluid Dynamics Model for Transient Laminar Flow Modeling: Pressure Wave Propagation and Velocity Profile Changes
,”
ASME J. Fluids Eng.
,
140
(
1
), p.
011102
.10.1115/1.4037504
24.
Khilqa
,
S.
,
Elkholy
,
M.
,
Al-Tofan
,
M.
,
Caicedo
,
J. M.
, and
Chaudhry
,
M. H.
,
2019
, “
Uncertainty Quantification for Damping in Transient Pressure Oscillations
,”
J. Water Resour. Plan. Manage.
,
145
(
9
), p.
04019039
.10.1061/(ASCE)WR.1943-5452.0001089
25.
Khilqa
,
S.
,
Elkholy
,
M.
,
Al-Tofan
,
M.
,
Caicedo
,
J. M.
, and
Chaudhry
,
M. H.
,
2019
, “
Damping in Transient Pressurized Flows
,”
J. Hydraul. Eng.
,
145
(
10
), p.
04019034
.10.1061/(ASCE)HY.1943-7900.0001624
26.
Brunone
,
B.
,
Ferrante
,
M.
, and
Cacciamani
,
M.
,
2004
, “
Decay of Pressure and Energy Dissipation in Laminar Transient Flow
,”
ASME J. Fluids Eng.
,
126
(
6
), pp.
928
934
.10.1115/1.1839926
27.
Holmboe
,
E. L.
, and
Rouleau
,
W. T.
,
1967
, “
The Effect of Viscous Shear on Transients in Liquid Lines
,”
ASME J. Basic Eng.
,
89
(
1
), pp.
174
180
.10.1115/1.3609549
28.
Motchenbacher
,
C. D.
, and
Connelly
,
J. A.
,
1993
,
Low-Noise Electronic System Design
.
29.
Lyons
,
R. G.
,
2001
,
Understanding Digital Signal Processing
,
Prentice Hall
, Upper Saddle River, NJ.
30.
Aguirre-Mendoza
,
A. M.
,
Oyuela
,
S.
,
Espinoza-Román
,
H. G.
,
Coronado-Hernández
,
O. E.
,
Fuertes-Miquel
,
V. S.
, and
Paternina-Verona
,
D. A.
,
2021
, “
2D CFD Modeling of Rapid Water Filling With Air Valves Using OpenFOAM
,”
Water-Sui
,
13
(
21
), p.
3104
.
31.
Bahadar
,
A.
,
2020
, “
Volume of Fluid Computations of Gas Entrainment and Void Fraction for Plunging Liquid Jets to Aerate Wastewater
,”
ChemEngineering
,
4
(
4
), p.
56
.10.3390/chemengineering4040056
32.
Fürst
,
J.
,
Lasota
,
M.
,
Lepicovsky
,
J.
,
Musil
,
J.
,
Pech
,
J.
,
Šidlof
,
P.
, and
Šimurda
,
D.
,
2021
, “
Effects of a Single Blade Incidence Angle Offset on Adjacent Blades in a Linear Cascade
,”
Processes
,
9
(
11
), p.
1974
.10.3390/pr9111974
33.
Minocha
,
N.
, and
Joshi
,
J. B.
,
2020
, “
3D CFD Simulation of Turbulent Flow Distribution and Pressure Drop in a Dividing Manifold System Using Openfoam
,”
Int. J. Heat Mass. Transfer
,
151
, p.
119420
.10.1016/j.ijheatmasstransfer.2020.119420
34.
Fay
,
J. A.
,
1994
,
Introduction to Fluid Mechanics
,
MIT Press
,
Cambridge, MA
.
35.
Krepper
,
E.
,
Cartland-Glover
,
G.
,
Grahn
,
A.
,
Weiss
,
F.-P.
,
Alt
,
S.
,
Hampel
,
R.
,
Kästner
,
W.
, and
Seeliger
,
A.
,
2010
, “
CFD-Modeling of Insulation Debris Transport Phenomena in Water Flow
,”
Nucl. Eng. Des.
,
240
(
9
), pp.
2357
2364
.10.1016/j.nucengdes.2009.11.012
36.
Bird
,
R. B.
,
Stewart
,
W. E.
, and
Lightfoot
,
E. N.
,
2002
,
Transport Phenomena
,
Wiley, Inc
,
New York
.
37.
Denton
,
J. D.
, and
Dawes
,
W. N.
,
1998
, “
Computational Fluid Dynamics for Turbomachinery Design
,”
Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci.
,
213
(
2
), pp.
107
124
.10.1243/0954406991522211
38.
Martins
,
N. M. C.
,
Carriço
,
N. J. G.
,
Ramos
,
H. M.
, and
Covas
,
D. I. C.
,
2014
, “
Velocity-Distribution in Pressurized Pipe Flow Using CFD: Accuracy and Mesh Analysis
,”
Comput Fluids
,
105
, pp.
218
230
.10.1016/j.compfluid.2014.09.031
39.
Tu
,
J.
,
Yeoh
,
G. H.
, and
Liu
,
C.
,
2008
,
Computational Fluid Dynamics—A Practical Approach
,
Elsevier
,
New York
.
40.
Lescovich
,
J. E.
,
1967
, “
The Control of Water Hammer by Automatic Valves
,”
Am. Water Works Assoc.
,
59
(
5
), pp.
632
644
.10.1002/j.1551-8833.1967.tb03391.x
41.
Ferreira
,
J. P. B. C. C.
,
Martins
,
N. M. C.
, and
Covas
,
D. I. C.
,
2018
, “
Ball Valve Behavior Under Steady and Unsteady Conditions
,”
J. Hydraul. Eng.
,
144
(
4
), p.
04018005
.10.1061/(ASCE)HY.1943-7900.0001434
42.
Meniconi
,
S.
,
Brunone
,
B.
,
Ferrante
,
M.
, and
Massari
,
C.
,
2012
, “
Transient Hydrodynamics of in-Line Valves in Viscoelastic Pressurized Pipes: Long-Period Analysis
,”
Exp. Fluids
,
53
(
1
), pp.
265
275
.10.1007/s00348-012-1287-3
43.
Wylie
,
E. B.
,
Streeter
,
V. L.
, and
Suo
,
L.
,
1993
,
Fluid Transients in Systems
,
Prentice Hall
,
Harlow, UK
.
44.
Chaudhry
,
M. H.
,
2014
,
Applied Hydraulic Transients
,
Springer-Verlag
,
New York
.
45.
Biçer
,
B.
, and
Sou
,
A.
,
2016
, “
Application of the Improved Cavitation Model to Turbulent Cavitating Flow in Fuel Injector Nozzle
,”
Appl. Math. Model
,
40
(
7–8
), pp.
4712
4726
.10.1016/j.apm.2015.11.049
46.
Zielke
,
W.
,
1968
, “
Frequency-Dependent Friction in Transient Pipe Flow
,”
ASME J. Basic Eng.
,
90
(
1
), pp.
109
115
.10.1115/1.3605049
47.
Trikha
,
A. K.
,
1975
, “
An Efficient Method for Simulating Frequency-Dependent Friction in Transient Liquid Flow
,”
ASME J. Fluids Eng.
,
97
(
1
), pp.
97
105
.10.1115/1.3447224
48.
Brunone
,
B.
,
Golia
,
U. M.
, and
Greco
,
M.
,
1995
, “
Effects of Two-Dimensionality on Pipe Transients Modeling
,”
J. Hydraul. Eng.
,
121
(
12
), pp.
906
912
.10.1061/(ASCE)0733-9429(1995)121:12(906)
49.
Urbanowicz
,
K.
,
Bergant
,
A.
,
Stosiak
,
M.
,
Deptuła
,
A.
,
Karpenko
,
M.
,
Kubrak
,
M.
, and
Kodura
,
A.
,
2022
, “
Water Hammer Simulation Using Simplified Convolution-Based Unsteady Friction Model
,”
Water-Sui
,
14
(
19
), p.
3151
.10.3390/w14193151
50.
Vardy
,
A. E.
,
Brown
,
J. M. B.
, and
Hwang
,
K. L.
,
1993
, “
A Weighting Function Model of Transient Turbulent Pipe Friction
,”
J. Hydraul. Res.
,
31
(
4
), pp.
533
548
.10.1080/00221689309498876
51.
Vitkovský
,
J.
,
Stephens
,
M.
,
Bergant
,
A.
,
Simpson
,
A.
, and
Lambert
,
M.
,
2006
, “
Numerical Error in Weighting Function-Based Unsteady Friction Models for Pipe Transients
,”
J. Hydraul. Eng.
,
132
(
7
), pp.
709
721
.10.1061/(ASCE)0733-9429(2006)132:7(709)
52.
Tijsseling
,
A. S.
,
1996
, “
Fluid-Structure Interaction in Liquid-Filled Pipe Systems: A Review
,”
J. Fluid Struct.
,
10
(
2
), pp.
109
146
.10.1006/jfls.1996.0009
53.
Wiggert
,
D. C.
, and
Tijsseling
,
A. S.
,
2001
, “
Fluid Transients and Fluid-Structure Interaction in Flexible Liquid-Filled Piping
,”
ASME Appl. Mech. Rev.
,
54
(
5
), pp.
455
481
.10.1115/1.1404122
54.
Simao
,
M.
,
Mora
,
J.
, and
Ramos
,
H. M.
,
2015
, “
Fluid-Structure Interaction With Different Coupled Models to Analyse an Accident Occurring in a Water Supply System
,”
J. Water Supply Res. Technol.–Aqua
,
64
(
3
), pp.
302
315
.10.2166/aqua.2014.128
55.
Kinsler
,
L. E.
,
Frey
,
A. R.
,
Coppens
,
A. B.
, and
Sanders
,
J. V.
,
2000
,
Fundamentals of Acoustics
,
Wiley
,
Hoboken, NJ
.
56.
Liou
,
J. C. P.
,
2016
, “
Understanding Line Packing in Frictional Water Hammer
,”
ASME J. Fluids Eng.
,
138
(
8
), p.
081303
.10.1115/1.4033368
You do not currently have access to this content.