Abstract

The present study aims to mathematically analyze the role of bronchial blood flow on heat transfer in respiratory infections. In general, the exchange of heat transfer in various infectious diseases like COVID-19 caused by SARS-CoV-2 has adversely affected respiration by reducing the physiological efficiency of the human respiratory tract. The mechanism of heat exchange through airway walls with the bronchial blood circulation still needs to be thoroughly studied for infectious diseases. In this article, a three-dimensional (3D) spatio-temporal theoretical model is developed to estimate the possible role of bronchial blood on heat exchange during breathing. The local description of the model is presented in a comprehensive and consistent dimensionless framework to explicitly state the actual physiological background. The global description is framed by a multicompartment-based approach, and the algorithm is solved using an advanced numerical scheme to ensure computational tractability. The numerical study elucidates the role of inhalation air temperature, breathing cycles, blood perfusion rate, and mucosal hydration. The outcomes of the algorithm estimate the parameters of the isothermal saturation boundary (ISB), which is defined as the position in the respiratory tract where the temperature of inhaled air comes in equilibrium with the body core saturation temperature. The derived results help to understand the pathophysiological threshold limits and recommend the values to evaluate respiratory distress. With the variations of inspiratory flow conditions, it is observed that the ISB position shifts to the distal branches with the increment in inhalation temperature, breathing rate and virus infection, and decrement in blood perfusion rate. The two antiparallel effects are observed: inhalation of cold air transmits the viral infection, and inhalation of warm air produces thermal injury. However, both can be well controlled by suitable ventilation rates. The observed threshold values may be helpful in clinical trials to correlate the anatomic configuration with pathophysiology.

References

1.
Mutuku
,
J. K.
,
Hou
,
W. C.
, and
Chen
,
W. H.
,
2020
, “
An Overview of Experiments and Numerical Simulations on Airflow and Aerosols Deposition in Human Airways and the Role of Bioaerosol Motion in COVID-19 Transmission
,”
Aerosol Air Qual. Res.
,
20
(
6
), pp.
1172
1196
.10.4209/aaqr.2020.04.0185
2.
Islam
,
M. S.
,
Larpruenrudee
,
P.
,
Paul
,
A. R.
,
Paul
,
G.
,
Gemci
,
T.
,
Gu
,
Y.
, and
Saha
,
S. C.
,
2021
, “
SARS CoV-2 Aerosol: How Far It Can Travel to the Lower Airways?
Phys. Fluids
,
33
(
6
), p.
061903
.10.1063/5.0053351
3.
Pierce
,
R. J.
, and
Worsnop
,
C. J.
,
1999
, “
Upper Airway Function and Dysfunction in Respiration
,”
Clin. Exp. Pharmacol. Physiol.
,
26
(
1
), pp.
1
10
.10.1046/j.1440-1681.1999.02988.x
4.
Xu
,
X. Y.
,
Ni
,
S. J.
,
Fu
,
M.
,
Zheng
,
X.
,
Luo
,
N.
, and
Weng
,
W. G.
,
2017
, “
Numerical Investigation of Airflow, Heat Transfer and Particle Deposition for Oral Breathing in a Realistic Human Upper Airway Model
,”
J. Thermal Biol.
,
70
, pp.
53
63
.10.1016/j.jtherbio.2017.05.003
5.
Hanna
,
L. M.
, and
Scherer
,
P. W.
,
1986
, “
A Theoretical Model of Localized Heat and Water Vapor Transport in the Human Respiratory Tract
,”
ASME J. Biomech. Eng.
,
108
(1), pp.
19
27
.10.1115/1.3138574
6.
Lv
,
Y. G.
,
Liu
,
J.
, and
Zhang
,
J.
,
2006
, “
Theoretical Evaluation of Burns to the Human Respiratory Tract Due to Inhalation of Hot Gas in the Early Stage of Fires
,”
Burns
,
32
(
4
), pp.
436
446
.10.1016/j.burns.2005.11.006
7.
Mortiz
,
A. R.
, and
Weisincer
,
J. H.
,
1945
, “
Effects of Cold Air on the Air Passages and Lungs
,”
Arch. Intern. Med.
,
75
, pp.
233
240
.10.1001/archinte.1945.00210280021003
8.
Shelly
,
M. P.
,
2001
, “
The Upper Airway-the Forgotten Organ
,”
Crit. Care
,
5
(
1
), pp.
1
2
.10.1186/cc971
9.
Kulkarni
,
N. A.
, and
Kleinstreuer
,
C.
,
2020
, “
High-Temperature Effects on the Mucus Layers in a Realistic Human Upper Airway Model
,”
Int. J. Heat Mass Transfer
,
163
, p.
120467
.10.1016/j.ijheatmasstransfer.2020.120467
10.
Ingenito
,
E. P.
,
Solway
,
J.
,
McFadden
,
E. R.
Jr.
,
Pichurko
,
B. M.
,
Cravalho
,
E. G.
, and
Drazen
,
J. M.
,
1986
, “
Finite Difference Analysis of Respiratory Heat Transfer
,”
J. Appl. Physiol.
,
61
(
6
), pp.
2252
2259
.10.1152/jappl.1986.61.6.2252
11.
Wu
,
D.
,
Tawhai
,
M. H.
,
Hoffman
,
E. A.
, and
Lin
,
C. L.
,
2014
, “
A Numerical Study of Heat and Water Vapor Transfer in MDCT-Based Human Airway Models
,”
Ann. Biomed. Eng.
,
42
(
10
), pp.
2117
2131
.10.1007/s10439-014-1074-9
12.
McFadden
,
E. R.
, Jr
,
1983
, “
Respiratory Heat and Water Exchange: Physiological and Clinical Implications
,”
J. Appl. Physiol.
,
54
(
2
), pp.
331
336
.10.1152/jappl.1983.54.2.331
13.
Tsu
,
M. E.
,
Babb
,
A. L.
,
Ralph
,
D. D.
, and
Hlastala
,
M. P.
,
1988
, “
Dynamics of Heat, Water, and Soluble Gas Exchange in the Human Airways: 1. A Model Study
,”
Ann. Biomed. Eng.
,
16
(
6
), pp.
547
571
.10.1007/BF02368015
14.
Daviskas
,
E.
,
Gonda
,
I.
, and
Anderson
,
S. D.
,
1990
, “
Mathematical Modeling of Heat and Water Transport in Human Respiratory Tract
,”
J. Appl. Physiol.
,
69
(
1
), pp.
362
372
.10.1152/jappl.1990.69.1.362
15.
Saha
,
S. C.
,
Francis
,
I.
,
Huang
,
X.
, and
Paul
,
A. R.
,
2022
, “
Heat Transfer and Fluid Flow Analysis in a Realistic 16-Generation Lung
,”
Phys. Fluids
,
34
(
6
), p.
061906
.10.1063/5.0093912
16.
Chen
,
X.
,
Ma
,
R.
,
Zhong
,
W.
,
Sun
,
B.
, and
Zhou
,
X.
,
2019
, “
Numerical Study of the Effects of Temperature and Humidity on the Transport and Deposition of Hygroscopic Aerosols in a G3-G6 Airway
,”
Int. J. Heat Mass Transfer
,
138
, pp.
545
552
.10.1016/j.ijheatmasstransfer.2019.04.114
17.
Soni
,
B.
, and
Nayak
,
A. K.
,
2019
, “
Effect of Inspiration Cycle and Ventilation Rate on Heat Exchange in Human Respiratory Airways
,”
J. Therm. Biol.
,
84
, pp.
357
367
.10.1016/j.jtherbio.2019.07.026
18.
Çeçen
,
A.
,
Bayraktar
,
C.
,
Özgür
,
A.
,
Akgül
,
G.
, and
Günal
,
Ö.
,
2021
, “
Evaluation of Nasal Mucociliary Clearance Time in COVID-19 Patients
,”
J. Craniofac. Surg.
,
32
(
8
), pp.
e702
e705
.10.1097/SCS.0000000000007699
19.
Karaman
,
M.
, and
Tek
,
A.
,
2009
, “
Deleterious Effect of Smoking and Nasal Septal Deviation on Mucociliary Clearance and Improvement After Septoplasty
,”
Am. J. Rhinol. Aller.
,
23
(
1
), pp.
2
7
.10.2500/ajra.2009.23.3253
20.
Khan
,
M. A.
,
Khan
,
Z. A.
,
Charles
,
M.
,
Pratap
,
P.
,
Naeem
,
A.
,
Siddiqui
,
Z.
,
Naqvi
,
N.
, and
Srivastava
,
S.
,
2021
, “
Cytokine Storm and Mucus Hypersecretion in COVID-19: Review of Mechanisms
,”
J. Inflammation Res.
,
14
, pp.
175
189
.10.2147/JIR.S271292
21.
Allinson
,
J. P.
,
Hardy
,
R.
,
Donaldson
,
G. C.
,
Shaheen
,
S. O.
,
Kuh
,
D.
, and
Wedzicha
,
J. A.
,
2016
, “
The Presence of Chronic Mucus Hypersecretion Across Adult Life in Relation to Chronic Obstructive Pulmonary Disease Development
,”
Am. J. Respir. Crit. Care Med.
,
193
(
6
), pp.
662
672
.10.1164/rccm.201511-2210OC
22.
Pennes
,
H. H.
,
1948
, “
Analysis of Tissue and Arterial Blood Temperatures in the Resting Human Forearm
,”
J. Appl. Physiol.
,
1
(
2
), pp.
93
122
.10.1152/jappl.1948.1.2.93
23.
Shamohammadi
,
H.
,
Mehrabi
,
S.
,
Sadrizadeh
,
S.
,
Yaghoubi
,
M.
, and
Abouali
,
O.
,
2022
, “
3D Numerical Simulation of Hot Airflow in the Human Nasal Cavity and Trachea
,”
Comput. Biol. Med.
,
147
, p.
105702
.10.1016/j.compbiomed.2022.105702
24.
Saidel, G. M., Kruse, K. L., and Primiano, F. P. Jr., 1983, “
Model Simulation of Heat and Water Transport Dynamics in an Airway
,”
ASME J. Biomech. Eng.
,
105
(
2
), pp.
188
193
.10.1115/1.3138404
25.
Tawhai, M. H., and Hunter, P. J., 2004, “Modeling Water Vapor and Heat Transfer in the Normal and the Intubated Airways,”
Ann. Biomed. Eng.
,
32
(
4
), pp.
609
622
.10.1023/B:ABME.0000019180.03565.7e
26.
Cheng
,
K. H.
,
Cheng
,
Y. S.
,
Yeh
,
H. C.
, and
Swift
,
D. L.
,
1997
, “
Measurements of Airway Dimensions and Calculation of Mass Transfer Characteristics of the Human Oral Passage
,”
ASME J. Biomech. Eng.
,
119
(
4
), pp.
476
482
.10.1115/1.2798296
27.
Soni
,
B.
,
Miguel
,
A. F.
, and
Nayak
,
A. K.
,
2020
, “
A Mathematical Analysis for Constructal Design of Tree Flow Networks Under Unsteady Flow
,”
Proc. R. Soc. A
,
476
(
2240
), p.
20200377
.10.1098/rspa.2020.0377
28.
Phuong
,
N. L.
,
Yamashita
,
M.
,
Yoo
,
S. J.
, and
Ito
,
K.
,
2016
, “
Prediction of Convective Heat Transfer Coefficient of Human Upper and Lower Airway Surfaces in Steady and Unsteady Breathing Conditions
,”
Build. Environ.
,
100
, pp.
172
185
.10.1016/j.buildenv.2016.02.020
29.
Goodarzi-Ardakani
,
V.
,
Taeibi-Rahni
,
M.
,
Salimi
,
M. R.
, and
Ahmadi
,
G.
,
2016
, “
Computational Simulation of Temperature and Velocity Distribution in Human Upper Respiratory Airway During Inhalation of Hot Air
,”
Respir. Physiol. Neurobiol.
,
223
, pp.
49
58
.10.1016/j.resp.2016.01.001
30.
Soni
,
B.
,
Nayak
,
A. K.
, and
Miguel
,
A. F.
,
2022
, “
Gas Flow in Occluded Respiratory Tree: A New Matrix-Based Approach
,”
ASME J. Fluids Eng.
,
144
(
7
), p.
071207
.10.1115/1.4053124
31.
Soni
,
B.
,
Nayak
,
A. K.
, and
Wereley
,
S.
,
2022
, “
A Novel Approach to Quantify Ventilation Heterogeneity in Occluded Bronchial Tree Based on Lung Admittance
,”
Phys. Fluids
,
34
(
4
), p.
043606
.10.1063/5.0085040
32.
Zhang
,
Z.
, and
Kleinstreuer
,
C.
,
2003
, “
Species Heat and Mass Transfer in a Human Upper Airway Model
,”
Int. J. Heat Mass Transfer
,
46
(
25
), pp.
4755
4768
.10.1016/S0017-9310(03)00358-2
33.
V'kovski
,
P.
,
Gultom
,
M.
,
Kelly
,
J. N.
,
Steiner
,
S.
,
Russeil
,
J.
,
Mangeat
,
B.
,
Cora
,
E.
, et al.,
2021
, “
Disparate Temperature-Dependent Virus–Host Dynamics for SARS-CoV-2 and SARS-CoV in the Human Respiratory Epithelium
,”
PLoS Biol.
,
19
(
3
), p.
e3001158
.10.1371/journal.pbio.3001158
34.
Herder
,
V.
,
Dee
,
K.
,
Wojtus
,
J. K.
,
Epifano
,
I.
,
Goldfarb
,
D.
,
Rozario
,
C.
,
Gu
,
Q.
, et al.,
2021
, “
Elevated Temperature Inhibits SARS-CoV-2 Replication in Respiratory Epithelium Independently of IFN-Mediated Innate Immune Defenses
,”
PLoS Biol.
,
19
(
12
), p.
e3001065
.10.1371/journal.pbio.3001065
35.
Prévost
,
J.
,
Richard
,
J.
,
Gasser
,
R.
,
Ding
,
S.
,
Fage
,
C.
,
Anand
,
S. P.
,
Adam
,
D.
, et al.,
2021
, “
Impact of Temperature on the Affinity of SARS-CoV-2 Spike Glycoprotein for Host ACE2
,”
J. Biol. Chem.
,
297
(
4
), p.
101151
.10.1016/j.jbc.2021.101151
36.
Tsai
,
C. L.
,
Saidel
,
G. M.
,
McFadden
,
E. R.
Jr.
, and
Fouke
,
J. M.
,
1990
, “
Radial Heat and Water Transport Across the Airway Wall
,”
J. Appl. Physiol.
,
69
(
1
), pp.
222
231
.10.1152/jappl.1990.69.1.222
37.
Baile
,
E. M.
,
Dahlby
,
R. W.
,
Wiggs
,
B. R.
,
Parsons
,
G. H.
, and
Pare
,
P. D.
,
1987
, “
Effect of Cold and Warm Dry Air Hyperventilation on Canine Airway Blood Flow
,”
J. Appl. Physiol.
,
62
(
2
), pp.
526
532
.10.1152/jappl.1987.62.2.526
38.
Serikov
,
V. B.
, and
Fleming
,
N. W.
,
2001
, “
Pulmonary and Bronchial Circulations: Contributions to Heat and Water Exchange in Isolated Lungs
,”
J. Appl. Physiol.
,
91
(
5
), pp.
1977
1985
.10.1152/jappl.2001.91.5.1977
39.
Baile
,
E. M.
,
Dahlby
,
R. W.
,
Wiggs
,
B. R.
, and
Pare
,
P. D.
,
1985
, “
Role of Tracheal and Bronchial Circulation in Respiratory Heat Exchange
,”
J. Appl. Physiol.
,
58
(
1
), pp.
217
222
.10.1152/jappl.1985.58.1.217
40.
Soni
,
B.
,
Suri
,
A.
,
Nayak
,
A. K.
, and
Miguel
,
A. F.
,
2022
, “
Simplified Lumped Parameter Model for Oscillatory Flow in an Elastic Tube: A Hierarchical Approach, ASME
,”
ASME J. Fluids Eng.
,
144
(
8
), p.
081301
.10.1115/1.4053553
41.
Kang
,
D.
,
Ellgen
,
C.
, and
Kulstad
,
E.
,
2021
, “
Possible Effects of Air Temperature on COVID–19 Disease Severity and Transmission Rates
,”
J. Med. Virol.
,
93
(
9
), pp.
5358
5366
.10.1002/jmv.27042
42.
Robinot
,
R.
,
Hubert
,
M.
,
de Melo
,
G. D.
,
Lazarini
,
F.
,
Bruel
,
T.
,
Smith
,
N.
, and
Levallois
,
S.
, et al.,
2021
, “
SARS-CoV-2 Infection Induces the Dedifferentiation of Multiciliated Cells and Impairs Mucociliary Clearance
,”
Nat. Commun.
,
12
(
1
), pp.
1
16
.10.1038/s41467-021-24521-x
43.
Li
,
X.
, and
Ma
,
X.
,
2020
, “
Acute Respiratory Failure in COVID-19: Is It “Typical” ARDS?
Crit. Care
,
24
(
1
), pp.
1
5
.10.1186/s13054-020-02911-9
44.
Alqahtani
,
M.
,
Abbas
,
M.
,
Alsabaani
,
A.
,
Alqarni
,
A.
,
Almohiy
,
H. M.
,
Alsawqaee
,
E.
,
Alshahrani
,
R.
, and
Alshahrani
,
S.
,
2022
, “
The Potential Impact of COVID-19 Virus on the Heart and the Circulatory System
,”
Infect. Drug Resist.
,
15
, pp.
1175
1189
.10.2147/IDR.S351318
45.
McFadden
,
E.
Jr.
,
1992
, “
Heat and Water Exchange in Human Airways
,”
Am. Rev. Respir. Dis.
,
146
(
5_pt_2
), pp.
S8
S10
.10.1164/ajrccm/146.5_Pt_2.S8
46.
Button
,
B.
,
Cai
,
L.-H.
,
Ehre
,
C.
,
Kesimer
,
M.
,
Hill
,
D. B.
,
Sheehan
,
J. K.
,
Boucher
,
R. C.
, and
Rubinstein
,
M.
,
2012
, “
A Periciliary Brush Promotes the Lung Health by Separating the Mucus Layer From Airway Epithelia
,”
Science
,
337
(
6097
), pp.
937
941
.10.1126/science.1223012
47.
Fahy
,
J. V.
, and
Dickey
,
B. F.
,
2010
, “
Airway Mucus Function and Dysfunction
,”
New Engl. J. Med.
,
363
(
23
), pp.
2233
2247
.10.1056/NEJMra0910061
You do not currently have access to this content.