Abstract

Wave rotor combustor technology is a new technical means to improve the thermal efficiency of aero-engine by using unsteady flow and constant volume combustion. In this article, the influence of wave rotor combustor channel structure on the mixture formation in the channel was studied by numerical simulation. The results showed that the internal flow field structure and change of any structure channel are similar. Flow separation will occur in all channels, and wake regions will be formed in the channels. The turbulence kinetic energy in the wake region was increased, and the velocity and pressure were decreased, resulting in the vortex in the channel. When the channel width was reduced to half of the original design, the relative standard deviation (RSD) of the mixture was reduced by at least 54.92% compared to the original design, and the global fuel mass fraction in the channel was increased by at least 27.32%. In addition, the fluctuation of discharge pressure was also reduced. The reduction of the channel height does not lead to a significant improvement in the aforementioned results. This study can provide guidance for the structural design of wave rotor combustor channel.

References

1.
Roy
,
G. D.
,
Frolov
,
S. M.
,
Borisov
,
A. A.
, and
Netzer
,
D. W.
,
2004
, “
Pulse Detonation Propulsion: Challenges, Current Status, and Future Perspective
,”
Prog. Energy Combust. Sci.
,
30
(
6
), pp.
545
672
.10.1016/j.pecs.2004.05.001
2.
Gong
,
E.
,
Hao
,
Y.
, and
Cao
,
X.
,
2023
, “
Research on the Working Characteristics of Wave Rotor Combustor Hot Jet Igniter and Its Validation
,”
Appl. Therm. Eng.
,
235
, p.
121407
.10.1016/j.applthermaleng.2023.121407
3.
Fatsis
,
A.
,
2022
, “
Gas turbine performance enhancement for naval ship propulsion using wave rotors
,”
J. Mar. Eng. Technol.
,
21
(
5
), pp.
297
309
.10.1080/20464177.2021.1933697
4.
Akbari
,
P.
, and
Muller
,
N.
,
2004
,
Performance Improvement of Recuperated and Unrecuperated Microturbines Using Wave Rotor Machines[C]
,
ASME CIMAC Congress
,
Kyoto
.
5.
Akbari
,
P.
, and
Szpynda
,
E.
,
2007
, “
Recent Developments in Wave Rotor Combustion Technology and Future Perspectives: A Progress Review
,”
AIAA
Paper No. 2007-5055.10.2514/6.2007-5055
6.
Akbari
,
P.
,
Nalim
,
R.
, and
Mueller
,
N.
,
2006
, “
A Review of Wave Rotor Technology and Its Applications
,”
ASME J. Eng. Gas Turbines Power
,
128
(
4
), pp.
717
735
.10.1115/1.2204628
7.
Nalim
,
M. R.
, and
Paxson
,
D. E.
,
1997
, “
A Numerical Investigation of Premixed Combustion in Wave Rotors
,”
ASME J. Eng. Gas Turbines Power
,
119
(
3
), pp.
668
675
.10.1115/1.2817036
8.
Nalim
,
M. R.
,
1999
, “
Assessment of Combustion Models of Internal Combustion Wave Rotors
,”
ASME J. Eng. Gas Turbines Power
,
121
(
2
), pp.
265
271
.10.1115/1.2817116
9.
Kang
,
Y.
,
Wang
,
C.
,
Fang
,
G.
,
Xing
,
F.
, and
Chan
,
S.
,
2022
, “
Flow and Combustion Characteristics of Wave Rotor–Trapped Vortex Combustor System
,”
Energies
,
16
(
1
), pp.
326
326
.10.3390/en16010326
10.
Welch
,
G. E.
,
Paxson
,
D. E.
,
Wilson
,
J.
, and
Snyder
,
P. H.
,
1999
,
Wave-Rotor-Enhanced Gas Turbine Engine Demonstrator
,
National Aeronautics and Space Administration Cleveland Oh Glenn Research Center
,
Cleveland, OH
.
11.
Costiuc
,
I.
, and
Chiru
,
A.
,
2017
, “
Evolution of the Pressure Wave Supercharger Concept
,”
IOP Conference Series: Materials Science and Engineering
, 252, p.
012081
.10.1088/1757-899X/252/1/012081
12.
Nalim
,
M. R.
,
Li
,
H.
, and
Akbari
,
P.
,
2009
, “
Air-Standard Aerothermodynamic Analysis of Gas Turbine Engines With Wave Rotor Combustion
,”
ASME J. Eng. Gas Turbines Power.
, 131(5), p.
054506
.10.1115/1.3078790
13.
Chan
,
S.
,
Liu
,
H.
, and
Xing
,
F.
,
2016
, “
Defining the Thermodynamic Efficiency in a Wave Rotor
,”
ASME J. Eng. Gas Turbines Power
,
138
(
11
), p.
112601
.10.1115/1.4033508
14.
Liu
,
X.
,
Wang
,
H.
,
Yu
,
Y.
,
Hu
,
D.
, and
Liu
,
P.
,
2022
, “
Investigation on Wave System Matching of Two-Phase Pressure Oscillation Tube
,”
Int. J. Refrig.
,
135
, pp.
75
84
.10.1016/j.ijrefrig.2022.01.002
15.
Li
,
J. Z.
,
Li
,
Y.
,
Wei
,
L.
, and
Zhang
,
K.
,
2018
, “
Numerical Investigation of Combustion Characteristics of a Wave Rotor Combustor Based on a Reduced Reaction Mechanism of Ethylene
,”
Int. J. Aerosp. Eng.
,
2018
, pp.
1
21
.10.1155/2018/8672760
16.
Shreeve
,
R. P.
, and
Mathur
,
A.
,
1985
, “
Proceedings of the 1985 ONR/NAV AIR Wave Rotor Research and Technology Workshop
,”
Naval Postgraduate School
,
Monterey, CA
, Report No.
NPS-67-85-008
.https://apps.dtic.mil/sti/pdfs/ADA161539.pdf
17.
Snyder
,
P. H.
, and
Fish
,
R. E.
,
1996
, “
Assessment of a Wave Rotor Topped Demonstrator Gas Turbine Engine Concept
,”
ASME
Paper No. 96-GT-04110.1115/96-GT-041.
18.
Li
,
H.
,
Akbari
,
P.
, and
Nalim
,
R.
,
2007
, “
Air-Standard Thermodynamic Analysis of Gas Turbine Engines Using Wave Rotor Combustion
,”
AIAA
Paper No. 2007-5050.10.2514/6.2007-5050
19.
Paxson
,
D. E.
,
1995
, “
Comparison Between Numerically Modeled and Experimentally Measured Wave-Rotor Loss Mechanisms
,”
J. Propul. Power
,
11
(
5
), pp.
908
914
.10.2514/3.23916
20.
Akbari
,
P.
,
Kharazi
,
A.
, and
Muller
,
N.
,
2003
, “
Utilizing Wave Rotor Technology to Enhance the Turbo Compression in Power and Refrigeration Cycles
,”
ASME
Paper No. IMECE2003-55222.10.1115/IMECE2003-55222
21.
Akbari
,
P.
, and
Mueller
,
N.
,
2024
,
Performance Improvement of Recuperated and Unrecuperated Microturbines Using Wave Rotor Machines
,
ASME CIMAC Congress
,
Kyoto
.
22.
Sutar
,
P.
,
2020
,
Numerical Simulation of Pressure W a VE Supercharger With Pockets Operating at Different Speeds
,
Purdue University
, West Lafayette, IN.
23.
Larosiliere
,
L. M.
,
1971
, “
Wave Rotor Charging process - Effects of Gradual Opening and Rotation
,”
J. Propul. Power
,
11
(
1
), pp.
178
184
.10.2514/3.23856
24.
Eidelman
,
S.
,
1984
, “
The Problem of Gradual Opening in Wave Rotor Passages
,”
J. Propul. Power
,
1
(
1
), pp.
23
28
.10.2514/3.22754
25.
Hoxie
,
S.
,
Lear
,
W.
, and
Micklow
,
G.
,
1998
, “
A CFD Study of Wave Rotor Losses Due to the Gradual Opening of Rotor Passage Inlets
,”
AIAA
Paper No. 1998-3253.10.2514/6.1998-3253
26.
Jagannath
,
R.
,
Bane
,
S. P.
, and
Feyz
,
M. E.
,
2017
, “
Assessment of Incidence Loss and Shaft Work Production for Wave Rotor Combustor With Non-Axial Channels
,”
AIAA
Paper No. 2017-1749.10.2514/6.2017-1749
27.
Tüchler
,
S.
, and
Copeland
,
C. D.
,
2019
, “
Validation of a Numerical Quasi One-Dimensional Model for Wave Rotor Turbines With Curved Channels
,”
ASME J. Eng. Gas Turbines Power.
, 142(2), p.
021017
.10.1115/1.4044286
28.
Liu
,
P.
,
Feng
,
M.
,
Liu
,
X.
,
Wang
,
H.
, and
H
,
D.
,
2021
, “
Performance Analysis of Wave Rotor Based on Response Surface Optimization Method
,”
ASME J. Energy Resour. Technol.
,
144
(
6
), pp.
1
18
.10.1115/1.4051758
29.
Nalim
,
M. R.
,
2000
, “
Longitudinally Stratified Combustion in Wave Rotors
,”
J. Propul. Power
,
16
(
6
), pp.
1060
1068
.10.2514/2.5676
30.
Pekkan
,
K.
, and
Nalim
,
M. R.
,
2003
, “
Two-Dimensional Flow and NOx Emissions in Deflagrative Internal Combustion Wave Rotor Configurations
,”
ASME J. Eng. Gas Turbines Power
,
125
(
3
), pp.
720
733
.10.1115/1.1586315
31.
Matsutomi
,
Y.
,
Meyer
,
S.
, and
Wijeyakulasuriya
,
S. D.
,
2010
, “
Experimental Investigation on the Wave Rotor Constant Volume Combustor
,”
AIAA
Paper No. 2010-7043.10.2514/6.2010-7043
32.
Akbari
,
P.
, and
Nalim
,
M. R.
,
2006
, “
Analysis of Flow Processes in Detonative Wave Rotors and Pulse Detonation Engines
,”
AIAA
Paper No. 2006-1236.10.2514/6.2006-1236
33.
Akbari
,
P.
,
Nalim
,
M. R.
, and
Snyder
,
P. H.
,
2006
, “
Numerical Simulation and Design of a Combustion Wave Rotor for Deflagrative and Detonative Propagation
,”
AIAA
Paper No. 2006-5134.10.2514/6.2006-5134
34.
Khan
,
N.
,
Paik
,
K. Y.
, and
Nalim
,
M. R.
,
2024
, “
Torch-Jet Ignition of Premixed Methane-Hydrogen-Air Blends in a Constant Volume Combustor: 3D Computational Modeling
,”
AIAA
Paper No. 2015-3784.10.2514/6.2015-3784
35.
Coleman
,
D.
, and
Vanatta
,
L.
,
2012
, “
Part 48 - Relative Standard Deviations (RSDs)
,”
Am. Lab.
,
44
(
6
), pp.
30
33
.https://www.americanlaboratory.com/913-Technical-Articles/114240-Part-48-Relative-Standard-Deviations-RSDs/
36.
Li
,
J.
,
Yuan
,
L.
, and
Mongia
,
H. C.
,
2017
, “
Simulation of Combustion Characteristics in a Hydrogen Fuelled Lean Single-Element Direct Injection Combustor
,”
Int. J. Hydrogen Energy
,
42
(
5
), pp.
3536
3548
.10.1016/j.ijhydene.2016.10.159
37.
Wang
,
Z.
,
Cai
,
Z.
,
Sun
,
M.
,
Wang
,
H.
, and
Zhang
,
Y.
,
2016
, “
Large Eddy Simulation of the Flame Stabilization Process in a Scramjet Combustor With Rearwall-Expansion Cavity
,”
Int. J. Hydrogen Energy
,
41
(
42
), pp.
19278
19288
.10.1016/j.ijhydene.2016.09.012
38.
Wanik
,
A.
, and
Schnell
,
U.
,
1989
, “
Some Remarks on the PISO and SIMPLE Algorithms for Steady Turbulent Flow Problems
,”
Comput. Fluids
,
17
(
4
), pp.
555
570
.10.1016/0045-7930(89)90028-5
You do not currently have access to this content.