Abstract

Inert solid particles have made the integration of more efficient power cycles with super high operating temperatures into the concentrated solar power (CSP) station feasible. Fluidized bed heat exchangers with feature of high heat transfer coefficient have great application potential in the particle-based CSP. However, the parasitic loads of the additional fluidizing gas loop and the finely sieved monosized particles may deteriorate the economic efficiency of the integrated system. In order to cope with this problem, a conceptual design of a shallow fluidized bed (SFB) heat exchanger is proposed for the new generation CSP technology. Fluidization characteristics of bauxite particles with a nonuniform particle size distribution in SFB with immersed tubes are investigated with a combination of experimental measurements and computational fluid dynamics simulations. Results show that the static bed height and opening area ratio of the distributor has insignificant influence on the range of semifluidized region and the minimum fluidization velocity Umf. The standard deviation of bed pressure drop σ in the grid region can be used as an alternative criterion for identifying the fluidization state. A range of superficial velocity that distinguishes two different solid circulation patterns exists, with its boundary values being four times and eight times the Umf, respectively. The immersed tubes can inhibit the asymmetric particle circulation patterns from developing in the SFB, but cause a substantial increase in the σ within the grid region.

References

1.
International Renewable Energy Agency
,
2020
, “
Renewable Power Generation Costs in 2019
,”
International Renewable Energy Agency
, Abu Dhabi, UAE.
2.
Stein
,
W. H.
, and
Buck
,
R.
,
2017
, “
Advanced Power Cycles for Concentrated Solar Power
,”
Sol. Energy
,
152
, pp.
91
105
.10.1016/j.solener.2017.04.054
3.
Jackson
,
G. S.
,
Imponenti
,
L.
,
Albrecht
,
K. J.
,
Miller
,
D. C.
, and
Braun
,
R. J.
,
2019
, “
Inert and Reactive Oxide Particles for High-Temperature Thermal Energy Capture and Storage for Concentrating Solar Power
,”
ASME J. Sol. Energy Eng.
,
141
(
2
), p.
021016
.10.1115/1.4042128
4.
Jiang
,
K.
,
Du
,
X.
,
Kong
,
Y.
,
Xu
,
C.
, and
Ju
,
X.
,
2019
, “
A Comprehensive Review on Solid Particle Receivers of Concentrated Solar Power
,”
Renew. Sust. Energ. Rev.
,
116
, p.
109463
.10.1016/j.rser.2019.109463
5.
Albrecht
,
K. J.
, and
Ho
,
C. K.
,
2019
, “
Heat Transfer Models of Moving Packed-Bed Particle-to-sCO2 Heat Exchangers
,”
ASME J. Sol. Energy Eng.
,
141
(
3
), p.
0310061
.10.1115/1.4041546
6.
Miller
,
D. C.
,
Pfutzner
,
C. J.
, and
Jackson
,
G. S.
,
2018
, “
Heat Transfer in Counterflow Fluidized Bed of Oxide Particles for Thermal Energy Storage
,”
Int. J. Heat Mass Transfer
,
126
, pp.
730
745
.10.1016/j.ijheatmasstransfer.2018.05.165
7.
Yutani
,
N.
,
Ho
,
T. C.
,
Fan
,
L. T.
,
Walawender
,
W. P.
, and
Song
,
J. C.
,
1983
, “
Statistical Study of the Grid Zone Behavior in a Shallow Gas–Solid Fluidized Bed Using a Mini-Capacitance Probe
,”
Chem. Eng. Sci.
,
38
(
4
), pp.
575
582
.10.1016/0009-2509(83)80117-1
8.
Cheng
,
Z.
,
Guo
,
Z.
,
Tan
,
Z.
,
Yang
,
J.
, and
Wang
,
Q.
,
2019
, “
Waste Heat Recovery From High-Temperature Solid Granular Materials: Energy Challenges and Opportunities
,”
Renew. Sust. Energy Rev.
,
116
, p.
109428
.10.1016/j.rser.2019.109428
9.
Zhang
,
B.
,
Zhao
,
Y.
,
Wang
,
J.
,
Song
,
S.
,
Dong
,
L.
,
Peng
,
L.
,
Yang
,
X.
, and
Luo
,
Z.
,
2014
, “
High Ash Fine Coal Dry Cleaning and Stability of Shallow Bed Dense-Phase Gas–Solid Separation Fluidized Bed
,”
Energy Fuel.
,
28
(
7
), pp.
4812
4818
.10.1021/ef5006429
10.
Esence
,
T.
,
Benoit
,
H.
,
Poncin
,
D.
,
Tessonneaud
,
M.
, and
Flamant
,
G.
,
2020
, “
A Shallow Cross-Flow Fluidized-Bed Solar Reactor for Continuous Calcination Processes
,”
Sol. Energy
,
196
, pp.
389
398
.10.1016/j.solener.2019.12.029
11.
Suo
,
M.
,
1976
, “
Calculational Methods for Performance of Heat Exchangers Enhanced With Fluidized Beds
,”
Lett. Heat Mass Transfer
,
3
(
6
), pp.
555
564
.10.1016/0094-4548(76)90011-4
12.
Rodriguez
,
O. M. H.
,
Pécora
,
A. A. B.
, and
Bizzo
,
W. A.
,
2002
, “
Heat Recovery From Hot Solid Particles in a Shallow Fluidized Bed
,”
Appl. Therm. Eng.
,
22
(
2
), pp.
145
160
.10.1016/S1359-4311(01)00076-X
13.
Yu
,
Q.
,
Yang
,
Y.
,
Wang
,
Z.
, and
Zhu
,
H.
,
2021
, “
Modeling and Parameter Sensitivity Analysis of Fluidized Bed Solid Particle/sCO2 Heat Exchanger for Concentrated Solar Power Plant
,”
Appl. Therm. Eng.
,
197
, p.
117429
.10.1016/j.applthermaleng.2021.117429
14.
Hasan
,
Z. W.
,
Sultan
,
A. J.
,
Sabri
,
L. S.
,
Ali
,
J. M.
,
Salih
,
H. G.
,
Majdi
,
H. S.
, and
Al-Dahhan
,
M. H.
,
2022
, “
Experimental Investigation on the Impact of Tube Bundle Designs on Heat Transfer Coefficient in Gas-Solid Fluidized Bed Reactor for Fischer-Tropsch Synthesis
,”
Int. Commun. Heat Mass
,
136
, p.
106169
.10.1016/j.icheatmasstransfer.2022.106169
15.
Stenberg
,
V.
,
Sköldberg
,
V.
,
Öhrby
,
L.
, and
Rydén
,
M.
,
2019
, “
Evaluation of Bed-to-Tube Surface Heat Transfer Coefficient for a Horizontal Tube in Bubbling Fluidized Bed at High Temperature
,”
Powder Technol.
,
352
, pp.
488
500
.10.1016/j.powtec.2019.04.073
16.
Wang
,
L.
,
Wu
,
P.
,
Zhang
,
Y.
,
Yang
,
J.
,
Tong
,
L.
, and
Ni
,
X.
,
2004
, “
Effects of Solid Particle Properties on Heat Transfer Between High-Temperature Gas Fluidized Bed and Immersed Surface
,”
Appl. Therm. Eng.
,
24
(
14–15
), pp.
2145
2156
.10.1016/j.applthermaleng.2004.01.013
17.
Bisognin
,
P. C.
,
Câmara Bastos
,
J. C. S.
,
Meier
,
H. F.
,
Padoin
,
N.
, and
Soares
,
C.
,
2020
, “
Influence of Different Parameters on the Tube-to-Bed Heat Transfer Coefficient in a Gas–Solid Fluidized Bed Heat Exchanger
,”
Chem. Eng. Process.
,
147
, p.
107693
.10.1016/j.cep.2019.107693
18.
Chew
,
J. W.
, and
Hrenya
,
C. M.
,
2011
, “
Link Between Bubbling and Segregation Patterns in Gas-Fluidized Beds With Continuous Size Distributions
,”
AIChE J.
,
57
(
11
), pp.
3003
3011
.10.1002/aic.12507
19.
Jiliang
,
M.
,
Xiaoping
,
C.
, and
Daoyin
,
L.
,
2013
, “
Minimum Fluidization Velocity of Particles With Wide Size Distribution at High Temperatures
,”
Powder Technol.
,
235
, pp.
271
278
.10.1016/j.powtec.2012.10.016
20.
Busciglio
,
A.
,
Vella
,
G.
, and
Micale
,
G.
,
2012
, “
On the Bubbling Dynamics of Binary Mixtures of Powders in 2D Gas–Solid Fluidized Beds
,”
Powder Technol.
,
231
, pp.
21
34
.10.1016/j.powtec.2012.07.033
21.
Rim
,
G.
, and
Lee
,
D.
,
2016
, “
Bubbling to Turbulent Bed Regime Transition of Ternary Particles in a Gas–Solid Fluidized Bed
,”
Powder Technol.
,
290
, pp.
45
52
.10.1016/j.powtec.2015.12.032
22.
Feng
,
R.
,
Li
,
J.
,
Cheng
,
Z.
,
Yang
,
X.
, and
Fang
,
Y.
,
2017
, “
Influence of Particle Size Distribution on Minimum Fluidization Velocity and Bed Expansion at Elevated Pressure
,”
Powder Technol.
,
320
, pp.
27
36
.10.1016/j.powtec.2017.07.024
23.
Cai
,
W.
,
Wang
,
S.
,
Jiang
,
X.
,
Muhammad
,
H.
, and
Lu
,
H.
,
2022
, “
CFD Study of Binary Mixture Mixing/Segregation of Supercritical Carbon Dioxide Fluidized Bed
,”
Powder Technol.
,
397
, p.
117029
.10.1016/j.powtec.2021.117029
24.
Abbaszadeh Molaei
,
E.
,
Yu
,
A. B.
, and
Zhou
,
Z. Y.
,
2019
, “
Particle Scale Modelling of Mixing of Ellipsoids and Spheres in Gas-Fluidized Beds by a Modified Drag Correlation
,”
Powder Technol.
,
343
, pp.
619
628
.10.1016/j.powtec.2018.11.054
25.
Liu
,
Y.
,
Huo
,
P.
,
Li
,
X.
, and
Qi
,
H.
,
2020
, “
Numerical Study of Coal Gasification in a dual-CFB Plant Based on the Generalized Drag Model QC-EMMS
,”
Fuel Process. Technol.
,
203
, p.
106363
.10.1016/j.fuproc.2020.106363
26.
Qin
,
Z.
,
Zhou
,
Q.
, and
Wang
,
J.
,
2019
, “
An EMMS Drag Model for Coarse Grid Simulation of Polydisperse Gas–Solid Flow in Circulating Fluidized Bed Risers
,”
Chem. Eng. Sci.
,
207
, pp.
358
378
.10.1016/j.ces.2019.06.037
27.
Liu
,
Y.
,
Wang
,
H.
,
Song
,
Y.
, and
Qi
,
H.
,
2022
, “
Numerical Study on Key Issues in the Eulerian-Eulerian Simulation of Fluidization With Wide Particle Size Distributions
,”
Int. J. Chem. React. Eng.
,
20
(
3
), pp.
357
372
.10.1515/ijcre-2021-0194
28.
Syamlal
,
M.
, and
O'Brien
,
T. J.
,
1989
, “
Computer Simulation of Bubbles in a Fluidized Bed
,”
AIChE Symp. Ser.
,
85
(
270
), pp.
22
31
.https://www.researchgate.net/publication/279892631_simulation_of_bubbles_in_a_fluidized_bed#fullTextFileContent
29.
Gidaspow
,
D.
,
1994
,
Multiphase Flow and Fluidization: Continuum and Kinetic Theory Descriptions
,
Academic Press
,
San Diego, CA
.
30.
Alagha
,
M. S.
, and
Szentannai
,
P.
,
2021
, “
Experimentally-Assessed Multi-Phase CFD Modeling of Segregating Gas–Solid Fluidized Beds
,”
Chem. Eng. Res. Des.
,
172
, pp.
215
225
.10.1016/j.cherd.2021.06.004
31.
Wang
,
T.
,
Tang
,
T.
,
Gao
,
Q.
,
Yuan
,
Z.
, and
He
,
Y.
,
2020
, “
Experimental and Numerical Investigations on the Particle Behaviours in a Bubbling Fluidized Bed With Binary Solids
,”
Powder Technol.
,
362
, pp.
436
449
.10.1016/j.powtec.2019.11.105
32.
Yurong
,
H.
,
Huilin
,
L.
,
Qiaoqun
,
S.
,
Lidan
,
Y.
,
Yunhua
,
Z.
,
Gidaspow
,
D.
, and
Bouillard
,
J.
,
2004
, “
Hydrodynamics of Gas–Solid Flow Around Immersed Tubes in Bubbling Fluidized Beds
,”
Powder Technol.
,
145
(
2
), pp.
88
105
.10.1016/j.powtec.2004.04.047
33.
Geldart
,
D.
,
1973
, “
Types of Gas Fluidization
,”
Powder Technol.
,
7
(
5
), pp.
285
292
.10.1016/0032-5910(73)80037-3
34.
Ding
,
J.
, and
Gidaspow
,
D.
,
1990
, “
A Bubbling Fluidization Model Using Kinetic Theory of Granular Flow
,”
AIChE J.
,
36
(
4
), pp.
523
538
.10.1002/aic.690360404
35.
Fedors
,
R. F.
, and
Landel
,
R. F.
,
1979
, “
An Empirical Method of Estimating the Void Fraction in Mixtures of Uniform Particles of Different Size
,”
Powder Technol.
,
23
(
2
), pp.
225
231
.10.1016/0032-5910(79)87011-4
36.
Gidaspow
,
D.
,
Bezburuah
,
R.
, and
Ding
,
J.
,
1991
,
Hydrodynamics of Circulating Fluidized Beds, Kinetic Theory Approach
,
Illinois Institute of Technolog
,
Chicago, IL
.
37.
Gao
,
J.
,
Lan
,
X.
,
Fan
,
Y.
,
Chang
,
J.
,
Wang
,
G.
,
Lu
,
C.
, and
Xu
,
C.
,
2009
, “
CFD Modeling and Validation of the Turbulent Fluidized Bed of FCC Particles
,”
AIChE J.
,
55
(
7
), pp.
1680
1694
.10.1002/aic.11824
38.
Syamlal
,
M.
,
1987
, “
The Particle-Particle Drag Term in a Multipatilcle Model of Fluidization
,” National Technical Information Service, Springfield, VA, Report No. DOE/MC/21353-2373, DE87 006500.
39.
Lun
,
C. K. K.
,
Savage
,
S. B.
,
Jeffrey
,
D. J.
, and
Chepurniy
,
N.
,
1984
, “
Kinetic Theories for Granular Flow: Inelastic Particles in Couette Flow and Slightly Inelastic Particles in a General Flowfield
,”
J. Fluid Mech.
,
140
, pp.
223
256
.10.1017/S0022112084000586
40.
Gidaspow
,
D.
, and
Huilin
,
L.
,
1996
, “
Collisional Viscosity of FCC Particles in a CFB
,”
AIChE J.
,
42
(
9
), pp.
2503
2510
.10.1002/aic.690420910
41.
Van Wachem
,
B. G. M.
,
Schouten
,
J. C.
,
Van den Bleek
,
C. M.
,
Krishna
,
R.
, and
Sinclair
,
J. L.
,
2001
, “
Comparative Analysis of CFD Models of Dense Gas–Solid Systems
,”
AIChE J.
,
47
(
5
), pp.
1035
1051
.10.1002/aic.690470510
42.
Lemmon
,
E. W.
,
Huber
,
M. L.
, and
Mclinden
,
M. O.
,
2010
,
NIST Standard Reference Database 23: Reference Fluid Thermodynamic and Transport Properties-REFPROP 9.0
,
National Institute of Standard and Technology
, Gaithersburg, MD.
43.
Joseph
,
G. G.
,
Leboreiro
,
J.
,
Hrenya
,
C. M.
, and
Stevens
,
A. R.
,
2007
, “
Experimental Segregation Profiles in Bubbling Gas-Fluidized Beds
,”
AIChE J.
,
53
(
11
), pp.
2804
2813
.10.1002/aic.11282
44.
Almuttahar
,
A.
, and
Taghipour
,
F.
,
2008
, “
Computational Fluid Dynamics of High Density Circulating Fluidized Bed Riser: Study of Modeling Parameters
,”
Powder Technol.
,
185
(
1
), pp.
11
23
.10.1016/j.powtec.2007.09.010
45.
Fu
,
Z.
,
Zhu
,
J.
,
Barghi
,
S.
,
Zhao
,
Y.
,
Luo
,
Z.
, and
Duan
,
C.
,
2019
, “
Minimum Fluidization Velocity of Binary Mixtures of Medium Particles in the Air Dense Medium Fluidized Bed
,”
Chem. Eng. Sci.
,
207
, pp.
194
201
.10.1016/j.ces.2019.06.005
46.
Zhu
,
Q.
,
Zhang
,
L.
, and
Hao
,
W.
,
2021
, “
Determining Minimum Fluidization Velocity in Magnetized Fluidized Bed With Geldart-B Particles
,”
Powder Technol.
,
389
, pp.
85
95
.10.1016/j.powtec.2021.05.018
47.
Wen
,
C. Y.
, and
Yu
,
Y. H.
,
1966
, “
Mechanics of Fluidization
,”
Chem. Eng. Prog. Symp. Ser.
,
62
, pp.
100
111
.https://www.mendeley.com/catalogue/5e46e55f-7c94-a9f3-26cde6546fd6/
48.
Yerushalmi
,
J.
, and
Cankurt
,
N. T.
,
1979
, “
Further Studies of the Regimes of Fluidization
,”
Powder Technol.
,
24
(
2
), pp.
187
205
.10.1016/0032-5910(79)87036-9
49.
Asegehegn
,
T. W.
,
Schreiber
,
M.
, and
Krautz
,
H. J.
,
2011
, “
Investigation of Bubble Behavior in Fluidized Beds With and Without Immersed Horizontal Tubes Using a Digital Image Analysis Technique
,”
Powder Technol.
,
210
(
3
), pp.
248
260
.10.1016/j.powtec.2011.03.025
50.
Kim
,
S. W.
,
Ahn
,
J. Y.
,
Kim
,
S. D.
, and
Lee
,
D. H.
,
2003
, “
Heat Transfer and Bubble Characteristics in a Fluidized Bed With Immersed Horizontal Tube Bundle
,”
Int. J. Heat Mass Transfer
,
46
(
3
), pp.
399
409
.10.1016/S0017-9310(02)00296-X
51.
Kunii
,
D.
, and
Levenspiel
,
O.
,
1991
,
Fluidization Engineering
, 2nd ed.,
Butterworth-Heinemann
,
Stoneham, MA
.
52.
Li
,
Y.
,
Fan
,
H.
, and
Fan
,
X.
,
2014
, “
Identify of Flow Patterns in Bubbling Fluidization
,”
Chem. Eng. Sci.
,
117
, pp.
455
464
.10.1016/j.ces.2014.07.012
You do not currently have access to this content.