Abstract

Models for surface pressure spectra beneath rough wall boundary layers are assessed, with particular emphasis on prediction from steady, Reynolds-averaged Navier–Stokes (RANS) data. RANS roughness boundary conditions are shown to have qualitatively good trends between roughness function and roughness Reynolds number, but model-to-model discrepancies remain and the universality of an equivalent sandgrain roughness height for turbulence models is doubtful. Existing empirical models for the surface pressure spectrum show good agreement in some spectral regions and a newly proposed model shows good matching across the spectrum in a variety of pressure gradient conditions. Adjustments are made to existing TNO analytical models to incorporate rough wall effects, including changes to the velocity spectrum model and the inclusion of a wall-shift, shown to be independent of local Reynolds number, pressure gradient, or turbulence model. The mathematical character of the rough wall spectrum has been revealed, but challenges remain to implement both flow and spectral modeling without a priori knowledge of the flow.

References

1.
Nikuradse
,
J.
,
1950
, “
Laws of Flow in Rough Pipes
,” National Advisory Committee for Aeronautics (NACA), Hampton, VA, Technical Report No. NACA-TM-1292.
2.
Dvorak
,
F. A.
,
1969
, “
Calculation of Turbulent Boundary Layers on Rough Surfaces in Pressure Gradient
,”
AIAA J.
,
7
(
9
), pp.
1752
1759
.10.2514/3.5386
3.
Raupach
,
M. R.
,
Antonia
,
R. A.
, and
Rajagopalan
,
S.
,
1991
, “
Rough-Wall Turbulent Boundary Layers
,”
ASME Appl. Mech. Rev.
,
44
(
1
), pp.
1
25
.10.1115/1.3119492
4.
Krogstad
,
P. A.
,
Antonia
,
R. A.
, and
Browne
,
L. W.
,
1992
, “
Comparison Between Rough- and Smooth-Wall Turbulent Boundary Layers
,”
J. Fluid Mech.
,
245
, pp.
599
617
.10.1017/S0022112092000594
5.
Jimenez
,
J.
,
2004
, “
Turbulent Flows Over Rough Walls
,”
Annu. Rev. Fluid Mech.
,
36
(
1
), pp.
173
196
.10.1146/annurev.fluid.36.050802.122103
6.
Flack
,
K. A.
, and
Schultz
,
M. P.
,
2014
, “
Roughness Effects on Wall-Bounded Turbulence
,”
Phys. Fluids
,
26
(
10
), p.
101305
.10.1063/1.4896280
7.
Townsend
,
A. A.
,
1976
,
The Structure of Turbulent Shear Flow
,
Cambridge University Press
,
Cambridge, UK
.
8.
Flack
,
K. A.
,
Schultz
,
M. P.
, and
Shapiro
,
T. A.
,
2005
, “
Support for Townsend's Reynolds Number Similarity Hypothesis on Rough Walls
,”
Phys. Fluids
,
17
(
3
), p.
035102
.10.1063/1.1843135
9.
Fritsch
,
D. J.
,
Vishwanathan
,
V.
,
Roy
,
C. J.
,
Lowe
,
K. T.
, and
Devenport
,
W. J.
,
2022
, “
Turbulence and Pressure Fluctuations in Rough Wall Boundary Layers in Pressure Gradients
,”
Exp. Fluids
,
63
(
9
), p.
140
.10.1007/s00348-022-03476-9
10.
Clauser
,
F. H.
,
1954
, “
Turbulent Boundary Layers in Adverse Pressure Gradient
,”
J. Aeronaut. Sci.
,
21
(
2
), pp.
91
108
.10.2514/8.2938
11.
Nagano
,
Y.
,
Tagawa
,
M.
, and
Tsuji
,
T.
,
1991
, “
Effects of Adverse Pressure Gradients on Mean Flows and Turbulence Statistics in a Boundary Layer
,”
Proceedings of the 8th International Symposium on Turbulent Shear Flows
, Munich, Germany, Sept. 9–11, pp.
7
21
.
12.
Shin
,
J. H.
, and
Song
,
S. J.
,
2015
, “
Pressure Gradient Effects on Smooth and Rough Surface Turbulent Boundary Layers–Part I: Adverse Pressure Gradient
,”
ASME J. Fluids Eng.
,
137
(
1
), p.
011204
.10.1115/1.4027475
13.
Yuan
,
J.
, and
Piomelli
,
U.
,
2014
, “
Numerical Simulations of Sink-Flow Boundary Layers Over Rough Surfaces
,”
Phys. Fluids
,
26
(
1
), p.
015113
.10.1063/1.4862672
14.
Yuan
,
J.
, and
Piomelli
,
U.
,
2015
, “
Numerical Simulation of a Spatially Developing Accelerating Boundary Layer Over Roughness
,”
J. Fluid Mech.
,
780
, pp.
192
214
.10.1017/jfm.2015.437
15.
Shin
,
J. H.
, and
Song
,
S. J.
,
2015
, “
Pressure Gradient Effects on Smooth and Rough Surface Turbulent Boundary Layers–Part I: Favorable Pressure Gradient
,”
ASME J. Fluids Eng.
,
137
(
1
), p.
011203
.10.1115/1.4027474
16.
Devenport
,
W. J.
, and
Lowe
,
K. T.
,
2022
, “
Equilibrium and Non-Equilibrium Turbulent Boundary Layers
,”
Prog. Aerosp. Sci.
,
131
, p.
100807
.10.1016/j.paerosci.2022.100807
17.
Aupoix
,
B.
,
2016
, “
Revisiting the Discrete Element Method for Predictions of Flows Over Rough Surfaces
,”
ASME J. Fluids Eng.
,
138
(
3
), p.
031205
.10.1115/1.4031558
18.
Wilcox
,
D. C.
,
2008
, “
Reassessment of the Scale-Determining Equation for Advanced Turbulence Models
,”
AIAA J.
,
46
(
11
), pp.
2823
2838
.10.2514/1.36541
19.
Wilcox
,
D. C.
,
2006
,
Turbulence Modeling for CFD
, 3rd ed.,
DCW Industries
,
La Cañada, CA
.
20.
Aupoix
,
B.
, and
Spalart
,
P. R.
,
2003
, “
Extensions of the Spalart-Allmaras Turbulence Model to Account for Wall Roughness
,”
Int. J. Heat Fluid Flow
,
24
(
4
), pp.
454
462
.10.1016/S0142-727X(03)00043-2
21.
Knopp
,
T.
,
Eisfeld
,
B.
, and
Calvo
,
J. B.
,
2009
, “
A New Extension for k-w Turbulence Models to Account for Wall Roughness
,”
Int. J. Heat Fluid Flow
,
30
(
1
), pp.
54
65
.10.1016/j.ijheatfluidflow.2008.09.009
22.
Aupoix
,
B.
,
2014
, “
Wall Roughness Modeling With k-w SST Model
,”
Proceedings of the 10th International Symposium on Engineering Turbulence Modelling and Measurements
, Marbella, Spain, Sept. 17–19, Paper No. Hal-01071701.
23.
Aupoix
,
B.
,
2015
, “
Roughness Corrections for the k–ω Shear Stress Transport Model: Status and Proposals
,”
ASME J. Fluids Eng.
,
137
(
2
), p.
021202
.10.1115/1.4028122
24.
Apsley
,
D.
,
2007
, “
CFD Calculation of Turbulent Flow With Arbitrary Wall Roughness
,”
Flow, Turbul. Combust.
,
78
(
2
), pp.
153
175
.10.1007/s10494-006-9059-x
25.
Song
,
S.
,
Demirel
,
Y. K.
,
Atlar
,
M.
,
Dai
,
S.
,
Day
,
S.
, and
Turan
,
O.
,
2020
, “
Validation of the CFD Approach for Modelling Roughness Effect on Ship Resistance
,”
Ocean Eng.
,
200
, p.
107029
.10.1016/j.oceaneng.2020.107029
26.
Meyers
,
T.
,
Forest
,
J. B.
, and
Devenport
,
W. J.
,
2015
, “
The Wall-Pressure Spectrum of High-Reynolds-Number Turbulent Boundary-Layer Flows Over Rough Surfaces
,”
J. Fluid Mech.
,
768
, pp.
261
293
.10.1017/jfm.2014.743
27.
Blake
,
W. K.
,
1970
, “
Turbulent Boundary-Layer Wall-Pressure Fluctuations on Smooth and Rough Walls
,”
J. Fluid Mech.
,
44
(
04
), pp.
637
660
.10.1017/S0022112070002069
28.
Blake
,
W. K.
,
1971
, “
Turbulent Velocity and Pressure Fields in Boundary-Layer Flows Over Rough Surfaces
,”
Symposia on Turbulence in Liquids
, Rolla, MO, Oct. 4–6, pp.
114
122
.
29.
Forest
,
J. B.
,
2012
, “
The Wall Pressure Spectrum of High Reynolds Number Rough-Wall Turbulent Boundary Layers
,” Master's thesis,
Virginia Polytechnic Institute and State University
,
Blacksburg, VA
.
30.
Joseph
,
L. A.
,
2017
, “
Pressure Fluctuations in a High-Reynolds-Number Turbulent Boundary Layer Over Rough Surfaces of Different Configurations
,” Ph.D. thesis,
Virginia Polytechnic Institute and State University
,
Blacksburg, VA
.
31.
Bull
,
M. K.
,
1996
, “
Wall Pressure Fluctuations Beneath Turbulent Boundary Layers: Some Reflections on Forty Years of Research
,”
J. Sound Vib.
,
190
(
3
), pp.
299
315
.10.1006/jsvi.1996.0066
32.
Fritsch
,
D. J.
,
Vishwanathan
,
V.
,
Lowe
,
K. T.
, and
Devenport
,
W. J.
,
2022
, “
Fluctuating Pressure Beneath Smooth Wall Boundary Layers in Non-Equilibrium Pressure Gradients
,”
AIAA J.
,
60
(
8
), pp.
4725
4743
.10.2514/1.J061431
33.
Schloemer
,
H.
,
1966
, “
Effects of Pressure Gradients on Turbulent Boundary-Layer Wall-Pressure Fluctuations
,”
U.S. Navy Underwater Sound Laboratory
,
New London, CT
, Report No. 747.
34.
Goody
,
M.
,
2004
, “
Empirical Spectral Model of Surface Pressure Fluctuations
,”
AIAA J.
,
42
(
9
), pp.
1788
1794
.10.2514/1.9433
35.
Fritsch
,
D. J.
,
Vishwanathan
,
V.
,
Roy
,
C. J.
,
Lowe
,
K. T.
,
Devenport
,
W. J.
,
Croaker
,
P.
,
Lane
,
G.
,
Tkachenko
,
O.
,
Pook
,
D.
,
Shubham
,
S.
, and
Sandberg
,
R. D.
,
2023
, “
Modeling the Surface Pressure Spectrum Beneath Turbulent Boundary Layers in Pressure Gradients
,”
AIAA J.
,
61
(
5
), pp.
2002
2021
.10.2514/1.J062074
36.
Parchen
,
R.
,
1998
,
Progress Report Draw: A Prediction Scheme for Trailing-Edge Noise Based on Detailed Boundary-Layer Characteristics
,
TNO Institute of Applied Physics
, TNO (Netherlands Organization for Applied Scientific Research), The Hague, Netherlands.
37.
Kraichnan
,
R. H.
,
1956
, “
Pressure Fluctuations in Turbulent Flow Over a Flat Plate
,”
J. Acoust. Soc. Am.
,
28
(
3
), pp.
378
390
.10.1121/1.1908336
38.
Blake
,
W. K.
,
1986
,
Mechanics of Flow-Induced Sound and Vibration
, 1st ed.,
Academic Press
,
London
.
39.
Lee
,
Y.-T.
,
Blake
,
W.
, and
Farabee
,
T.
,
2005
, “
Modeling of Wall Pressure Fluctuations Based on Time Mean Flow Field
,”
ASME J. Fluids Eng.
,
127
(
2
), pp.
233
240
.10.1115/1.1881698
40.
Fischer
,
A.
,
Bertagnolio
,
F.
, and
Madsen
,
H. A.
,
2017
, “
Improvements of TNO Type Trailing Edge Noise Models
,”
Eur. J. Mech. B: Fluids
,
61
, pp.
255
262
.10.1016/j.euromechflu.2016.09.005
41.
Grasso
,
G.
,
Jaiswal
,
P.
,
Wu
,
H.
,
Moreau
,
S.
, and
Roger
,
M.
,
2019
, “
Analytical Models of the Wall-Pressure Spectrum Under a Turbulent Boundary Layer
,”
J. Fluid Mech.
,
877
, pp.
1007
1062
.10.1017/jfm.2019.616
42.
Catlett
,
M. R.
,
Bryan
,
B. S.
,
Chang
,
N.
,
Hemingway
,
H.
, and
Anderson
,
J.
M.,
2022
, “
Modeling Unsteady Surface Pressure Auto-Spectra for Turbulent Boundary Layer Flow Over Small Dense Roughness
,”
AIAA
Paper No. 2022-2560.10.2514/6.2022-2560
43.
Joseph
,
L. A.
,
Devenport
,
W. J.
, and
Glegg
,
S.
,
2022
, “
Empirical Model for Low-Speed Rough-Wall Turbulent Boundary Layer Pressure Spectra
,”
AIAA J.
,
60
(
4
), pp.
2160
2168
.10.2514/1.J060965
44.
Devenport
,
W. J.
,
Burdisso
,
R.
,
Borgoltz
,
A.
,
Ravetta
,
P.
,
Barone
,
M.
,
Brown
,
K.
, and
Morton
,
M.
,
2013
, “
The Kevlar-Walled Anechoic Wind Tunnel
,”
J. Sound Vib.
,
332
(
17
), pp.
3971
3991
.10.1016/j.jsv.2013.02.043
45.
Vishwanathan
,
V.
,
Szoke
,
M.
,
Duetsch-Patel
,
J.
,
Fritsch
,
D. J.
,
Gargiulo
,
A.
,
Borgoltz
,
A.
,
Lowe
,
K. T.
,
Roy
,
C. J.
, and
Devenport
,
W. J.
,
2020
, “
Aerodynamic Design and Validation of a Contraction Profile for Flow Field Improvement and Uncertainty Quantification in a Subsonic Wind Tunnel
,”
AIAA
Paper No. 2020-2211.10.2514/6.2020-2211
46.
Duetsch-Patel
,
J. E.
,
Viswanathan
,
V.
,
Minionis
,
J.
,
Totten
,
E.
,
Gargiulo
,
A.
,
Fritsch
,
D. J.
,
Szoke
,
M.
,
Bortoltz
,
A.
,
Roy
,
C. J.
,
Lowe
,
K. T.
, and
Devenport
,
W. J.
,
2020
, “
Aerodynamic Design and Assessment of Modular Test Section Walls for CFD Validation in Hybrid Anechoic Wind Tunnels
,”
AIAA
Paper No. 2020-2214.10.2514/6.2020-2214
47.
Fritsch
,
D. J.
,
Vishwanathan
,
V.
,
Duetsch-Patel
,
J. E.
,
Gargiulo
,
A.
,
Lowe
,
K. T.
, and
Devenport
,
W. J.
,
2020
, “
The Pressure Signature of High Reynolds Number Smooth Wall Turbulent Boundary Layers in Pressure Gradient Family
,”
AIAA
Paper No. 2020-3066.10.2514/6.2020-3066
48.
Fritsch
,
D. J.
,
Vishwanathan
,
V.
,
Lowe
,
K. T.
, and
Devenport
,
W. J.
,
2021
, “
The Space-Time Correlation of Pressure Under High Reynolds Number Smooth Wall Turbulent Boundary Layers in Pressure Gradient Family
,”
AIAA
Paper No. 2021-1946.10.2514/6.2021-1946
49.
Vishwanathan
,
V.
,
Fritsch
,
D. J.
,
Lowe
,
K. T.
, and
Devenport
,
W. J.
,
2021
, “
Analysis of Coherent Structures Over a Smooth Wall Turbulent Boundary Layer in Pressure Gradient Using Spectral Proper Orthogonal Decomposition
,”
AIAA
Paper No. 2021-2893.10.2514/6.2021-2893
50.
Fritsch
,
D. J.
,
Vishwanathan
,
V.
,
Roy
,
C. J.
,
Lowe
,
K. T.
,
Devenport
,
W. J.
,
Nishi
,
Y.
,
Knopp
,
T.
, et al.,
2022
, “
Experimental and Computational Study of 2D Smooth Wall Turbulent Boundary Layers in Pressure Gradient
,”
AIAA
Paper No. 2022-0696.10.2514/6.2022-0696
51.
Vishwanathan
,
V.
,
Fritsch
,
D. J.
,
Lowe
,
K. T.
, and
Devenport
,
W. J.
,
2023
, “
History Effects and Wall Similarity of Non-Equilibrium Turbulent Boundary Layers in Varying Pressure Gradient Over Rough and Smooth Surfaces
,”
Int. J. Heat Fluid Flow
,
102
, p.
109145
.10.1016/j.ijheatfluidflow.2023.109145
52.
Fritsch
,
D. J.
,
Vishwanathan
,
V.
,
Lowe
,
K. T.
, and
Devenport
,
W. J.
,
2021
, “
The Effect of Grazing Flow on Pinhole Condenser Microphones
,”
AIAA
Paper No. 2021-0130.10.2514/6.2021-0130
53.
Gravante
,
S. P.
,
Naguib
,
A. M.
,
Wark
,
C. E.
, and
Nagib
,
H. M.
,
1998
, “
Characterization of the Pressure Fluctuations Under a Fully Developed Turbulent Boundary Layer
,”
AIAA J.
,
36
(
10
), pp.
1808
1816
.10.2514/2.296
54.
Fritsch
,
D. J.
,
Vishwanathan
,
V.
,
Lowe
,
K. T.
, and
Devenport
,
W. J.
,
2022
, “
Surface Pressure Spectra Beneath High Reynolds Number Smooth and Rough Wall Boundary Layers in Pressure Gradients
,”
University Libraries, Virginia Tech
,
Blacksburg, VA
.
55.
Spalart
,
P.
, and
Allmaras
,
S.
,
1992
, “
A One-Equation Turbulence Model for Aerodynamic Flows
,”
AIAA
Paper No. 92-0439.10.2514/6.1992-439
56.
Zagarola
,
M. V.
, and
Smits
,
A. J.
,
1998
, “
Mean-Flow Scaling of Turbulent Pipe Flow
,”
J. Fluid Mech.
,
373
, pp.
33
79
.10.1017/S0022112098002419
57.
Panton
,
R. L.
, and
Linebarger
,
J. H.
,
1974
, “
Wall Pressure Spectra Calculations for Equilibrium Boundary Layers
,”
J. Fluid Mech.
,
65
(
2
), pp.
261
287
.10.1017/S0022112074001388
58.
Wilson
,
D. K.
,
1997
, “
A Three-Dimensional Correlation/Spectral Model for Turbulent Velocities in a Convective Boundary Layer
,”
Boundary-Layer Meteorol.
,
85
(
1
), pp.
35
52
.10.1023/A:1000418709945
59.
Lane
,
G.
,
Sidebottom
,
W.
, and
Croaker
,
P.
,
2021
, “
Application of Wall-Modelled LES to the Prediction of Turbulent Flow Noise
,”
Proceedings of Acoustics 2021
,
Wollongong
,
NSW, Australia
, Feb. 21–23, Paper No. 68.https://acoustics.asn.au/conference_proceedings/AAS2021/
60.
Michel
,
R.
,
Quemard
,
C.
, and
Durant
,
R.
,
1968
, “
Hypotheses on the Mixing Length and Application to the Calculation of Turbulent Boundary Layers
,”
Proceedings of Computation of Turbulent Boundary Layers
, Stanford, CA, Aug. 19–24, pp.
195
207
.
61.
Wilcox
,
D. C.
,
1993
,
Turbulence Modeling for CFD
, 1st ed.,
DCW Industries
,
La Cañada, CA
.
You do not currently have access to this content.