Abstract

This paper deals with the modeling of turbulent flow through a 90 deg pipe bend using an unsteady Reynolds-averaged Navier–Stokes (U-RANS) approach where k–ε model is used for turbulence closure. While limitations in solving complex flows of the k–ε model have been reported in the literature, this study demonstrates that for pipe flows with curvature, the k–ε model performs reasonably well. Investigations have been carried out to find out the influence of Reynolds number (Re) and bend curvature ratio (Rc/D) on turbulent flow parameters, namely, instantaneous axial velocity, turbulent kinetic energy, turbulent intensity, and wall shear stress. Bend curvature is found to strongly influence the turbulent flow characteristics, while no such high Reynolds number dependency is observed in this study range. In general, this paper presents a computationally cost-effective numerical study on the time averaged turbulent flow field in a 90 deg pipe bend, which may be used for the design and development of 90 deg pipe bends at a high Reynolds number regime.

References

1.
Dean
,
W. R.
, and
Hurst
,
J. M.
,
1959
, “
Note on the Motion of Fluid in a Curved Pipe
,”
Mathematika
,
6
(
1
), pp.
77
85
.10.1112/S0025579300001947
2.
Kalpakli
,
A.
,
Örlü
,
R.
, and
Alfredsson
,
P. H.
,
2012
, “
Dean Vortices in Turbulent Flows: Rocking or Rolling?
,”
J. Vis.
,
15
(
1
), pp.
37
38
.10.1007/s12650-011-0108-8
3.
Noorani
,
A.
,
El Khoury
,
G. K.
, and
Schlatter
,
P.
,
2013
, “
Evolution of Turbulence Characteristics From Straight to Curved Pipes
,”
Int. J. Heat Fluid Flow
,
41
, pp.
16
26
.10.1016/j.ijheatfluidflow.2013.03.005
4.
Sreenivasan
,
K. R.
, and
Strykowski
,
P. J.
,
1983
, “
Stabilization Effects in Flow Through Helically Coiled Pipes
,”
Exp. Fluids
,
1
(
1
), pp.
31
36
.10.1007/BF00282264
5.
Webster
,
D. R.
, and
Humphrey
,
J. A. C.
,
1997
, “
Traveling Wave Instability in Helical Coil Flow
,”
Phys. Fluids
,
9
(
2
), pp.
407
418
.10.1063/1.869139
6.
Di Piazza
,
I.
, and
Ciofalo
,
M.
,
2011
, “
Transition to Turbulence in Toroidal Pipes
,”
J. Fluid Mech.
,
687
, pp.
72
117
.10.1017/jfm.2011.321
7.
Itō
,
H.
,
1959
, “
Friction Factors for Turbulent Flow in Curved Pipes
,”
ASME J. Basic Eng.
,
81
(
2
), pp.
123
132
.10.1115/1.4008390
8.
Sudo
,
K.
,
Sumida
,
M.
, and
Hibara
,
H.
,
1998
, “
Experimental Investigation on Turbulent Flow in a Circular-Sectioned 90-Degree Bend
,”
Exp. Fluids
,
25
(
1
), pp.
42
49
.10.1007/s003480050206
9.
Anwer
,
M.
,
So
,
R. M. C.
, and
Lai
,
Y. G.
,
1989
, “
Perturbation by and Recovery From Bend Curvature of a Fully Developed Turbulent Pipe Flow
,”
Phys. Fluids A Fluid Dyn.
,
1
(
8
), pp.
1387
1397
.10.1063/1.857315
10.
Hellstrom
,
F.
, and
Fuchs
,
L.
,
2007
, “
Numerical Computations of Steady and Unsteady Flow in Bended Pipes
,” 37th
AIAA
Fluid Dynamics Conference: 37th Fluid Dynamics Conference, Miami Fl, pp. 1850-1859. https://doi.org/10.2514/6.2007-4350
11.
Rowe
,
M.
,
1970
, “
Measurements and Computations of Flow in Pipe Bends
,”
J. Fluid Mech.
,
43
(
4
), pp.
771
783
.10.1017/S0022112070002732
12.
Lee
,
G. H.
,
Choi
,
Y. D.
, and
Han
,
S. H.
,
2007
, “
Measurement of Developing Turbulent Flow in a U-Bend of Circular Cross-Section
,”
J. Mech. Sci. Technol.
,
21
(
2
), pp.
348
359
.10.1007/BF02916295
13.
McConalogue
,
D. J.
, and
Srivastava
,
R. S.
,
1968
, “
Motion of a Fluid in a Curved Tube
,”
Proc. R. Soc. London Ser. A. Math. Phys. Sci.
,
307
(
1488
), pp.
37
53
.
14.
Dutta
,
P.
,
Saha
,
S. K.
,
Nandi
,
N.
, and
Pal
,
N.
,
2016
, “
Numerical Study on Flow Separation in 90° Pipe Bend Under High Reynolds Number by K-ε Modelling
,”
Eng. Sci. Technol. Int. J.
,
19
(
2
), pp.
904
910
.10.1016/j.jestch.2015.12.005
15.
Takamura
,
H.
,
Ebara
,
S.
,
Hashizume
,
H.
,
Aizawa
,
K.
, and
Yamano
,
H.
,
2012
, “
Flow Visualization and Frequency Characteristics of Velocity Fluctuations of Complex Turbulent Flow in a Short Elbow Piping Under High Reynolds Number Condition
,”
ASME J. Fluids Eng.
,
134
(
10
), p.
101201
.10.1115/1.4007436
16.
Sudo
,
K.
,
Sumida
,
M.
, and
Hibara
,
H.
,
2000
, “
Experimental Investigation on Turbulent Flow Through a Circular-Sectioned 180 Bend
,”
Exp. Fluids
,
28
(
1
), pp.
51
57
.10.1007/s003480050007
17.
Wilcox
,
D. C.
,
1998
,
Turbulence Modeling for CFD
,
DCW Industries
,
La Canada, CA
.
18.
Durbin
,
P. A.
, and
Reif
,
B. A. P.
,
2011
,
Statistical Theory and Modeling for Turbulent Flows
,
Wiley
, Chichester, UK.
19.
Patankar
,
S. V.
,
Pratap
,
V. S.
, and
Spalding
,
D. B.
,
1983
, “
Prediction of Turbulent Flow in Curved Pipes
,”
Numerical Prediction of Flow, Heat Transfer, Turbulence and Combustion
,
Elsevier
, New York, pp.
147
159
.
20.
Al-Rafai
,
W. N.
,
Tridimas
,
Y. D.
, and
Woolley
,
N. H.
,
1990
, “
A Study of Turbulent Flows in Pipe Bends
,”
Proc. Inst. Mech. Eng. Part C Mech. Eng. Sci.
,
204
(
6
), pp.
399
408
.10.1243/PIME_PROC_1990_204_120_02
21.
Pruvost
,
J.
,
Legrand
,
J.
, and
Legentilhomme
,
P.
,
2004
, “
Numerical Investigation of Bend and Torus Flows, Part I: Effect of Swirl Motion on Flow Structure in U-Bend
,”
Chem. Eng. Sci.
,
59
(
16
), pp.
3345
3357
.10.1016/j.ces.2004.03.040
22.
Hellstrom
,
L. H. O.
,
Zlatinov
,
M. B.
,
Smits
,
A. J.
, and
Cao
,
G.
,
2011
, “
Turbulent Pipe Flow Through a 90 Bend
,”
Seventh International Symposium on Turbulence and Shear Flow Phenomena
, Begel House, Danbury, CT.
23.
Sugiyama
,
H.
, and
Hitomi
,
D.
,
2005
, “
Numerical Analysis of Developing Turbulent Flow in a 180 Bend Tube by an Algebraic Reynolds Stress Model
,”
Int. J. Numer. Methods Fluids
,
47
(
12
), pp.
1431
1449
.10.1002/fld.818
24.
Pellegrini
,
M.
,
Endo
,
H.
, and
Ninokata
,
H.
,
2011
, “
Numerical Investigation of Bent Pipe Flows at Transitional Reynolds Number
,”
Prog. Nucl. Energy
,
53
(
7
), pp.
916
920
.10.1016/j.pnucene.2011.02.005
25.
Röhrig
,
R.
,
Jakirlić
,
S.
, and
Tropea
,
C.
,
2015
, “
Comparative Computational Study of Turbulent Flow in a 90 Pipe Elbow
,”
Int. J. Heat Fluid Flow
,
55
, pp.
120
131
.10.1016/j.ijheatfluidflow.2015.07.011
26.
Sakakibara
,
J.
, and
Machida
,
N.
,
2012
, “
Measurement of Turbulent Flow Upstream and Downstream of a Circular Pipe Bend
,”
Phys. Fluids
,
24
(
4
), p.
041702
.10.1063/1.4704196
27.
Ono
,
A.
,
Kimura
,
N.
,
Kamide
,
H.
, and
Tobita
,
A.
,
2011
, “
Influence of Elbow Curvature on Flow Structure at Elbow Outlet Under High Reynolds Number Condition
,”
Nucl. Eng. Des.
,
241
(
11
), pp.
4409
4419
.10.1016/j.nucengdes.2010.09.026
28.
Dutta
,
P.
, and
Nandi
,
N.
,
2019
, “
Numerical Study on Turbulent Separation Reattachment Flow in Pipe Bends With Different Small Curvature Ratio
,”
J. Inst. Eng. Ser. C
,
100
(
6
), pp.
995
1004
.10.1007/s40032-018-0488-9
29.
Dutta
,
P.
, and
Nandi
,
N.
,
2021
, “
Numerical Analysis on the Development of Vortex Structure in 90° Pipe Bend
,”
Prog. Comput. Fluid Dyn. Int. J.
,
21
(
5
), p.
261
.10.1504/PCFD.2021.117466
30.
Hüttl
,
T. J.
, and
Friedrich
,
R.
,
2001
, “
Direct Numerical Simulation of Turbulent Flows in Curved and Helically Coiled Pipes
,”
Comput. Fluids
,
30
(
5
), pp.
591
605
.10.1016/S0045-7930(01)00008-1
31.
Di Liberto
,
M.
,
Di Piazza
,
I.
, and
Ciofalo
,
M.
,
2013
, “
Turbulence Structure and Budgets in Curved Pipes
,”
Comput. Fluids
,
88
, pp.
452
472
.10.1016/j.compfluid.2013.09.028
32.
Ganesh
,
N.
,
Dutta
,
P.
,
Ramachandran
,
M.
,
Bhoi
,
A. K.
, and
Kalita
,
K.
,
2019
, “
Robust Metamodels for Accurate Quantitative Estimation of Turbulent Flow in Pipe Bends
,”
Eng. Comput.
,
36
(
3
), pp.
1
18
.
33.
Narayanan
,
G.
,
Joshi
,
M.
,
Dutta
,
P.
, and
Kalita
,
K.
,
2019
, “
PSO-Tuned Support Vector Machine Metamodels for Assessment of Turbulent Flows in Pipe Bends
,”
Eng. Comput.
,
37
(
3
), pp.
981
1001
.10.1108/EC-05-2019-0244
34.
Gamahara
,
M.
, and
Hattori
,
Y.
,
2017
, “
Searching for Turbulence Models by Artificial Neural Network
,”
Phys. Rev. Fluids
,
2
(
5
), p.
54604
.10.1103/PhysRevFluids.2.054604
35.
Gholami
,
A.
,
Bonakdari
,
H.
,
Zaji
,
A. H.
,
Michelson
,
D. G.
, and
Akhtari
,
A. A.
,
2016
, “
Improving the Performance of Multi-Layer Perceptron and Radial Basis Function Models With a Decision Tree Model to Predict Flow Variables in a Sharp 90 Bend
,”
Appl. Soft Comput.
,
48
, pp.
563
583
.10.1016/j.asoc.2016.07.035
36.
Gholami
,
A.
,
Bonakdari
,
H.
,
Fenjan
,
S. A.
, and
Akhtari
,
A. A.
,
2016
, “
Flow Variables Prediction Using Experimental, Computational Fluid Dynamic and Artificial Neural Network Models in a Sharp Bend
,”
Int. J. Eng.
,
29
(
1
), pp.
14
22
.10.5829/idosi.ije.2016.29.01a.03
37.
Dutta
,
P.
,
Saha
,
S. K.
, and
Nandi
,
N.
,
2014
, “
Numerical Study of Curvature Effect on Turbulent Flow in 90 Pipe Bend
,” Proceedings of International Conference on Theoretical, Applied, Computational and Experimental Mechanics, IIT Kharagpur, India, Dec. 29-31, Paper No.
ICTACEM-2014/028.
38.
Dutta
,
P.
,
Saha
,
S. K.
, and
Nandi
,
N.
,
2015
, “
Computational Study of Turbulent Flow in Pipe Bends
,”
Int. J. Appl. Eng. Res.
,
10
(
11
), pp.
10128
10133
.https://www.researchgate.net/publication/282950530_Computational_study_of_turbulent_flow_in_pipe_bends
39.
Dutta
,
P.
, and
Nandi
,
N.
,
2015
, “
Study on Pressure Drop Characteristics of Single Phase Turbulent Flow in Pipe Bend for High Reynolds Number
,”
ARPN J. Eng. Appl. Sci.
,
10
(
5
), pp.
2221
2226
.https://www.researchgate.net/publication/282716633_Study_on_pressure_drop_characteristics_of_single_phase_turbulent_flow_in_pipe_bend_for_high_reynolds_number
40.
Dutta
,
P.
, and
Nandi
,
N.
,
2016
, “
Effect of Bend Curvature on Velocity & Pressure Distribution From Straight to a 90 Pipe Bend-A Numerical Study
,”
REST J. Emerg. Trends Model. Manuf.
,
2
(
4
), pp.
103
108
.
41.
López-López
,
J. C.
,
Salinas-Vázquez
,
M.
,
Verma
,
M. P.
,
Vicente
,
W.
, and
Galindo-García
,
I. F.
,
2019
, “
Computational Fluid Dynamic Modeling to Determine the Resistance Coefficient of a Saturated Steam Flow in 90 Degree Elbows for High Reynolds Number
,”
ASME J. Fluids Eng.
,
141
(
11
), p.
111103
.10.1115/1.4043495
42.
Nowruzi
,
H.
,
Ghassemi
,
H.
, and
Nourazar
,
S. S.
,
2020
, “
Study of the Effects of Aspect Ratio on Hydrodynamic Stability in Curved Rectangular Ducts Using Energy Gradient Method
,”
Eng. Sci. Technol. Int. J.
,
23
(
2
), pp.
334
344
.10.1016/j.jestch.2019.05.004
43.
Jang
,
D. S.
,
Jetli
,
R.
, and
Acharya
,
S.
,
1986
, “
Comparison of the PISO, SIMPLER, and SIMPLEC Algorithms for the Treatment of the Pressure-Velocity Coupling in Steady Flow Problems
,”
Numer. Heat Transfer Part A Appl.
,
10
(
3
), pp.
209
228
.10.1080/10407788608913517
44.
Fluent
,
A.
,
2016
,
Fluent 15 Users Guide
,
Lebanon
.
45.
Dutta
,
P.
, and
Nandi
,
N.
,
2015
, “
Effect of Reynolds Number and Curvature Ratio on Single Phase Turbulent Flow in Pipe Bends
,”
Mech. Mech. Eng.
,
19
(
1
), pp.
5
16
.
46.
Kim
,
J.
,
Yadav
,
M.
, and
Kim
,
S.
,
2014
, “
Characteristics of Secondary Flow Induced by 90-Degree Elbow in Turbulent Pipe Flow
,”
Eng. Appl. Comput. Fluid Mech.
,
8
(
2
), pp.
229
239
.10.1080/19942060.2014.11015509
47.
Homicz
,
G. F.
,
2004
,
Computational Fluid Dynamic Simulations of Pipe Elbow Flow
,
Sandia National Laboratories
, CA.
48.
Tu
,
J.
,
Yeoh
,
G. H.
, and
Liu
,
C.
,
2018
,
Computational Fluid Dynamics: A Practical Approach
,
Butterworth-Heinemann
, Oxford, UK.
49.
Roache
,
P. J.
,
1994
, “
Perspective: A Method for Uniform Reporting of Grid Refinement Studies
,”
ASME J. Fluids Eng
., 116(3), pp.
405
413
.10.1115/1.2910291
50.
Roache
,
P. J.
,
1998
, “
Verification of Codes and Calculations
,”
AIAA J.
,
36
(
5
), pp.
696
702
.10.2514/2.457
51.
El Khoury
,
G. K.
,
Schlatter
,
P.
,
Noorani
,
A.
,
Fischer
,
P. F.
,
Brethouwer
,
G.
, and
Johansson
,
A. V.
,
2013
, “
Direct Numerical Simulation of Turbulent Pipe Flow at Moderately High Reynolds Numbers
,”
Flow, Turbul. Combust.
,
91
(
3
), pp.
475
495
.10.1007/s10494-013-9482-8
52.
Carlsson
,
C.
,
Alenius
,
E.
, and
Fuchs
,
L.
,
2015
, “
Swirl Switching in Turbulent Flow Through 90 Pipe Bends
,”
Phys. Fluids
,
27
(
8
), p.
085112
.10.1063/1.4928971
53.
Chattopadhyay
,
H.
,
2006
, “
Effect of Surface Motion on Transport Processes Due to Circular Impinging Jets—A Numerical Study
,”
Dry. Technol.
,
24
(
11
), pp.
1347
1351
.10.1080/07373930600951117
54.
Chattopadhyay
,
H.
, and
Cemal Benim
,
A.
,
2011
, “
Turbulent Heat Transfer Over a Moving Surface Due to Impinging Slot Jets
,”
ASME J. Heat Transfer-Trans. ASME
,
133
(
10
), pp.
1
5
.10.1115/1.4004075
You do not currently have access to this content.