Abstract

A vortex pump with a specific speed of 76 was studied in its turbine mode by using fluent 6.3 based on the steady, three-dimensional, incompressible, Reynolds time-averaged Navier–Stokes equations, standard k-ε turbulence model, and nonequilibrium wall function in multiple reference frame system. The performance and flow structure of six liquids with different densities and viscosities were characterized, and the hydraulic, volumetric, and mechanical losses were discomposed. The correction factors of flow rate, head, shaft-power, efficiency, and disk friction power in turbine mode were correlated with impeller Reynolds number at three operational points. The conversion factors of flow rate, head, efficiency from the pump mode to the turbine mode were expressed with Reynolds number and compared with the counterparts of centrifugal pumps in the literature. It was indicated that the vortex pump can produce power as a turbine but becomes inefficient with increasing viscosity or decreasing impeller Reynolds number, especially as the number is smaller than 104 due to increased hydraulic, volumetric, and mechanical power losses. A vortex structure with radial, axial, and meridian vortices occurs in the impeller at different flow rates and viscosities. The incidence at blade leading edge and deviation angle at the blade trailing edge depend largely on flow rate and viscosity. The impeller should be modified to improve its hydraulic performance under highly viscous fluid flow conditions. The entropy generation rate method cannot demonstrate the change in hydraulic loss with viscosity when the Reynolds number is below 104.

References

1.
Anonymous, 2021, “
What is a Vortex Pump?
,” EDDY Pump, El Cajon, CA, accessed May 7, 2021, https://eddypump.com/education/what-is-a-vortex-pump/
2.
Rütschi
,
K.
,
1968
, “
Die Arbeitsweise von Freistrompumpen
,”
Schweizerische Bauzeitung
,
86
(
32
), pp.
575
582
.
3.
Schivley
,
G. P.
, and
Dussourd
,
J. L.
,
1970
, “
An Analytical and Experimental Study of a Vortex Pump
,”
ASME J. Fluids Eng.
,
92
(
4
), pp.
889
900
.10.1115/1.4051313
4.
Ohba
,
H.
,
Nakashima
,
Y.
,
Shiramoto
,
K.
,
Shiramoto
,
K.
, and
Kozima
,
T.
,
1978
, “
A Study on Performance and Internal Flow Pattern of a Vortex Pump
,”
Bull. JSME
,
21
(
162
), pp.
1741
1749
.10.1299/jsme1958.21.1741
5.
Ohba
,
H.
,
Nakashima
,
Y.
, and
Shiramoto
,
K.
,
1982
, “
Effects of Solid Particles on the Performance of a Vortex Pump
,”
Turbomachinery
,
10
(
2
), pp.
18
24
.http://jstage.jst.go.jp/article/tsj1973/10/2/10_2_76/_pdf/-char/ja
6.
Ohba
,
H.
,
Nakashima
,
Y.
, and
Shiramoto
,
K.
,
1983
, “
A Study on Internal Flow and Performance of a Vortex Pump: Part 1—Theoretical Analysis
,”
Bull. JSME
,
26
(
216
), pp.
999
1006
.10.1299/jsme1958.26.999
7.
Ohba
,
H.
,
Nakashima
,
Y.
,
Shiramoto
,
K.
,
Shiramoto
,
K.
, and
Kojima
,
T.
,
1983
, “
A Study on Internal Flow and Performance of a Vortex Pump: Part 2-a Comparison Between Analysis and Experimental Results, and a Design Method of Pump
,”
Bull. JSME
,
26
(
216
), pp.
1007
1013
.10.1299/jsme1958.26.1007
8.
Aoki
,
M.
,
1983
, “
Studies on the Vortex Pump (1st Report, Internal Flow)
,”
Bull. JSME
,
26
(
213
), pp.
387
393
.10.1299/jsme1958.26.387
9.
Aoki
,
M.
,
1983
, “
Studies on the Vortex Pump (2nd Report, Pump Performance)
,”
Bull. JSME
,
26
(
213
), pp.
394
398
.10.1299/jsme1958.26.394
10.
Aoki
,
M.
,
1983
, “
Studies on the Vortex Pump (3rd Report, Estimation of Pump Performance)
,”
Bull. JSME
,
26
(
216
), pp.
1014
1019
.10.1299/jsme1958.26.1014
11.
Aoki
,
M.
,
1983
, “
Studies on the Vortex Pump (4th Report, Cavitation Characteristics)
,”
Bull. JSME
,
26
(
216
), pp.
1020
1026
.10.1299/jsme1958.26.1020
12.
Kikuyama
,
K.
,
Murakami
,
M.
,
Minemura
,
K.
,
Asakura
,
E. I. J. I.
, and
Ikegami
,
T.
,
1986
, “
The Effects of Entrained Air Upon a Vortex Pump Performance
,”
Trans. JSME-Ser. B
,
52
(
473
), pp.
393
400
.10.1299/kikaib.52.393
13.
Chen
,
H.
, Guan, X., Chen, C., and Gao, L.,
1993
, “
Research on Internal Flow of Vortex Pump Impeller
,”
Trans. Chin. Soc. Agric. Mach.
,
24
(
2
), pp.
24
27
.http://mall.cnki.net/magazine/article/NYJX199302004.htm
14.
Zheng
,
M.
,
Yuan
,
S.
, and
Chen
,
C.
,
2000
, “
Influence of Structural Parameters of a Vortex Pump on Its Performance
,”
Trans. Chin. Soc. Agric. Mach.
,
31
(
2
), pp.
46
49
.10.3969/j.issn.1000-1298.2000.02.013
15.
Sha
,
Y.
,
Yang
,
M.
,
Kang
,
C.
,
Wang
,
J. F.
, and
Chen
,
H. L.
,
2004
, “
Design Method and Characteristic Analysis of Vortex Pump
,”
Trans. Chin. Soc. Agric. Eng.
,
20
(
1
), pp.
124
127
.10.3321/j.issn:1002-6819.2004.01.030
16.
Yang
,
M.
,
Gao
,
B.
,
Liu
,
D.
,
Li
,
H.
, and
Gu
,
H. F.
,
2007
, “
Analysis on Liquid-Solid Two-Phase Flow Field in Vortex Pump by PDPA Measurement
,”
Trans. Chin. Soc. Agric. Mach.
,
38
(
12
), pp.
53
57
.10.3969/j.issn.1000-1298.2007.12.013
17.
Yang
,
M.
,
Gao
,
B.
,
Liu
,
D.
,
Gu
,
H. F.
, and
Li
,
H.
,
2008
, “
Experimental Investigation of Salt-Out Two-Phase Flow in a Vortex Pump by PDPA Measurements
,”
J. Eng. Thermophys.
,
29
(
2
), pp.
237
240
.10.3321/j.issn:0253-231X.2008.02.015
18.
Sha
,
Y.
,
2011
, “
Experiments on Performance and Internal Flow of a Vortex Pump
,”
Trans. Chin. Soc. Agric. Eng.
,
27
(
4
), pp.
141
146
.10.3969/j.issn.1002-6819.2011.04.024
19.
Gao
,
B.
, and
Yang
,
M.
,
2009
, “
Particle Concentration Distribution and Its Effect on Salt-Out Features in a Vortex Pump
,”
J. Eng. Thermophys.
,
30
(
12
), pp.
2031
2033
.10.3321/j.issn:0253-231X.2009.12.014.
20.
Gao
,
B.
, and
Yang
,
M.
,
2010
, “
Research on Turbulent Velocity Fluctuations of Salt-Out Particles in a Vortex Pump Volute
,”
J. Eng. Thermophys.
,
31
(
2
), pp.
275
278
www.cqvip/qk/90922x/201002/32962965.html.
21.
Wu
,
J.
,
Sha
,
Y.
, and
Xu
,
X.
,
2010
, “
Experimental Investigation on Variable Speed Performance and Volute Flow of Vortex Pump
,”
J. Zhejiang Univ. (Eng. Sci.
),
44
(
9
), pp.
1811
1817
.10.3785/j.issn.1008-973X.2010.09.029
22.
Sha
,
Y.
, and
Hou
,
L.
,
2010
, “
Effect of Impeller Location and Flow Measurement in Volute of a Vortex Pump
,”
Trans. Chin. Soc. Agric. Mach.
,
41
(
11
), pp.
57
62
.10.3969/j.issn.1000-1298.2010.11.011
23.
Sha
,
Y.
, and
Liu
,
X.
,
2013
, “
Performance Test on Solid-Liquid Two-Phase Flow Hydrotransport of Vortex Pump
,”
Trans. Chin. Soc. Agric. Eng.
,
29
(
22
), pp.
76
82
.10.3969/j.issn.1002-6819.2013.22.009
24.
Gerlach
,
A.
,
Perlitz
,
D.
,
Lykholt-Ustrup
,
F.
,
Jacobsen
,
C. B.
, and
Thamsen
,
P. U.
,
2017
, “
The Clogging Behavior of a Vortex Pump-An Experimental Study on the Influence of Impeller Designs
,”
ASME
Paper No. FEDSM2017-69021.10.1115/FEDSM2017-69021
25.
Gerlach
,
A.
,
Thamsen
,
P. U.
,
Wulff
,
S.
, and
Jacobsen
,
C. B.
,
2017
, “
Design Parameters of Vortex Pumps: A Meta-Analysis of Experimental Studies
,”
Energies
,
10
(
1
), p.
58
.10.3390/en10010058
26.
Shi
,
W.
,
Wang
,
Y.
,
Kong
,
F.
,
Sha
,
Y.
, and
Yuan
,
H.
,
2005
, “
Numerical Simulation of Internal Flow Field Within the Volute of Vortex Pump
,”
Trans. Chin. Soc. Agric. Eng.
,
21
(
9
), pp.
72
75
.10.3321/j.issn:1002-6819.2005.09.016
27.
Shi
,
W.
,
Wang
,
Y.
,
Sha
,
Y.
, Liu, H., and Wang , Z
.
,
2006
, “
Research on the Internal Flow of Vortex Pump
,”
Trans. Chin. Soc. Agric. Mach.
,
37
(
1
), pp.
47
50
.10.3969/j.issn.1000-1298.2006.01.018
28.
Xia
,
P.
,
Liu
,
S.
, and
Wu
,
Y.
,
2006
, “
Numerical Simulation of Steady Flow in Vortex Pump
,”
J. Eng. Thermophys.
,
27
(
3
), pp.
420
422
.10.3321/j.issn:0253-231X.2006.03.019
29.
Steinmann
,
A.
,
Wurm
,
H.
, and
Otto
,
A.
,
2010
, “
Numerical and Experimental Investigation of the Unsteady Cavitating Flow in a Vortex Pump
,”
J. Hydrodyn.
,
22
(
S1
), pp.
319
329
.10.1016/S1001-6058(09)60213-4
30.
Cervinka
,
M.
,
2012
, “
Computational Study of Sludge Pump Design With Vortex Impeller
,”
Proceedings of 18th International Conference on Engineering Mechanics
, May 14–17, Svratka, Czech Republic, pp.
191
201
.
31.
Gao
,
X. F.
,
Shi
,
W. D.
,
Zhang
,
D. S.
,
Zhang
,
Q. H.
, and
Fang
,
B.
,
2014
, “
Optimization Design and Test of Vortex Pump Based on CFD Orthogonal Test
,”
Trans. Chin. Soc. Agric. Mach.
,
45
(
5
), pp.
101
106
.10.6041/j.issn.1000-1298.2014.05.016
32.
Wang
,
X. L.
,
Zhu
,
R. S.
,
Yu
,
Z. J.
, and
Su
,
B. W.
,
2011
, “
Influences of High-Low Blade on Performance of Vortex Pumps
,”
China Mech. Eng.
,
22
(
17
), pp.
2030
2033
.www.cmemo.org.cn/EN/abstract/abstract2872.shtml
33.
Yang
,
M.
,
Gao
,
B.
,
Li
,
H.
, and
Gu
,
H.
,
2008
, “
Simulation and Experimental Research on Salt-Out Two-Phase Flow Field in a Vortex Pump
,”
Chin. J. Mech. Eng.
,
44
(
12
), pp.
42
48
.10.3901/JME.2008.12.042
34.
Sha
,
Y.
, and
Liu
,
X. S.
,
2014
, “
Numerical Calculation on Gas-Liquid Two-Phase Hydrotransport and Flow Field Measurement in Volute With Probes for Vortex Pump
,”
Trans. Chin. Soc. Agric. Eng.
,
30
(
18
), pp.
93
100
.10.3969/j.issn.1002-6819.2014.18.012
35.
Tan
,
P.
,
Sha
,
Y.
,
Bai
,
X.
,
Tu
,
D.
,
Ma
,
J.
,
Huang
,
W.
, and
Fang
,
Y.
,
2017
, “
A Performance Test and Internal Flow Field Simulation of a Vortex Pump
,”
Appl. Sci.
,
7
(
12
), p.
1273
.10.3390/app7121273
36.
Gerlach
,
A.
,
Preuss
,
E.
,
Thamsen
,
P. U.
, and
Lykholt-Ustrup
,
F.
,
2017
, “
Numerical Simulations of the Internal Flow Pattern of a Vortex Pump Compared to the Hamel-Oseen Vortex
,”
J. Mech. Sci. Technol.
,
31
(
4
), pp.
1711
1719
.10.1007/s12206-017-0319-6
37.
Imasaka
,
Y.
,
Kanno
,
H.
,
Saito
,
S.
,
Miyagawa
,
K.
,
Nohmi
,
M.
,
Isono
,
M.
, and
Kawai
,
M.
,
2018
, “
Clogging Mechanisms of Vortex Pumps: Fibrous Material Motion Capture and Simulation With a CFD and DEM Coupling Method
,”
ASME
Paper No. FEDSM2018-83503.10.1115/FEDSM2018-83503
38.
Quan
,
H.
,
Chai
,
Y.
,
Li
,
R.
, and
Guo
,
J.
,
2019
, “
Numerical Simulation and Experiment for Study on Internal Flow Pattern of Vortex Pump
,”
Eng. Computations
,
36
(
5
), pp.
1579
1596
.10.1108/EC-09-2018-0420
39.
Quan
,
H.
,
Chai
,
Y.
,
Li
,
R.
,
Peng
,
G. Y.
, and
Guo
,
Y.
,
2019
, “
Influence of Circulating-low's Geometric Characters on Energy Transition of a Vortex Pump
,”
Eng. Computat.
,
36
(
9
), pp.
3122
3137
.10.1108/EC-03-2019-0082
40.
Quan
,
H.
,
Cheng
,
J.
,
Guo
,
Y.
,
Kang
,
L.
, and
Peng
,
G.
,
2020
, “
Influence of Screw Centrifugal Inducer on Internal Flow Structure of Vortex Pump
,”
ASME J. Fluids Eng.
,
142
(
9
), p.
091203
.10.1115/1.4047229
41.
Quan
,
H.
,
Guo
,
Y.
,
Li
,
R.
,
Su
,
Q.
, and
Chai
,
Y.
,
2020
, “
Optimization Design and Experimental Study of Vortex Pump Based on Orthogonal Test
,”
Sci. Prog.
,
103
(
1
), pp. 1–20.10.1177/0036850419881883
42.
Gao
,
X.
,
Shi
,
W.
,
Shi
,
Y.
,
Chang
,
H.
, and
Zhao
,
T.
,
2020
, “
DEM-CFD Simulation and Experiments on the Flow Characteristics of Particles in Vortex Pumps
,”
Water
,
12
(
9
), p.
2444
.10.3390/w12092444
43.
Li
,
W. G.
, and
Zhang
,
Y. L.
,
2018
, “
The Vortex Pump Under Highly Viscous Liquid Flow Conditions
,”
Arabian J. Sci. Eng.
,
43
(
9
), pp.
4739
4761
.10.1007/s13369-018-3112-7
44.
Li
,
W.
,
2019
, “
Vortex Pump as Turbine-a Type Turbine for Energy Generation or Recovery Based on Computational Fluid Dynamics Prediction
,”
ASME J. Fluids Eng.
,
141
(
10
), p.
101105
.10.1115/1.4042754
45.
Li
,
W.
,
2016
, “
Effects of Viscosity on Turbine Mode Performance and Flow of a Low Specific Speed Centrifugal Pump
,”
Appl. Math. Modell.
,
40
(
2
), pp.
904
926
.10.1016/j.apm.2015.06.015
46.
Li
,
W.
,
2017
, “
Optimising Prediction Model of Centrifugal Pump as Turbine With Viscosity Effects
,”
Appl. Math. Modell.
,
41
, pp.
375
398
.10.1016/j.apm.2016.09.002
47.
Abazariyan
,
S.
,
Rafee
,
R.
, and
Derakhshan
,
S.
,
2018
, “
Experimental Study of Viscosity Effects on a Pump as Turbine Performance
,”
Renewable Energy
,
127
, pp.
539
547
.10.1016/j.renene.2018.04.084
48.
Rossi
,
M.
,
Comodi
,
G.
,
Piacente
,
N.
, and
Renzi
,
M.
,
2018
, “
Effects of Viscosity on the Performance of Hydraulic Power Recovery Turbines (HPRTs) by the Means of Computational Fluid Dynamics (CFD) Simulations
,”
Energy Procedia
,
148
, pp.
170
177
.10.1016/j.egypro.2018.08.046
49.
Rossi
,
M.
,
Comodi
,
G.
,
Piacente
,
N.
, and
Renzi
,
M.
,
2020
, “
Energy Recovery in oil Refineries by Means of a Hydraulic Power Recovery Turbine (HPRT) Handling Viscous Liquids
,”
Appl. Energy
,
270
, p.
115097
.10.1016/j.apenergy.2020.115097
50.
Maleki
,
A.
,
Ghorani
,
M. M.
,
Haghighi
,
M. H.
, and
Riasi
,
A.
,
2020
, “
Numerical Study on the Effect of Viscosity on a Multistage Pump Running in Reverse Mode
,”
Renewable Energy
,
150
, pp.
234
254
.10.1016/j.renene.2019.12.113
51.
Solanki
,
B. S.
, and
Tiwari
,
A. C.
,
2016
, “
Review of Various Aspects of Using Centrifugal Pump in Turbine Mode for Small Hydro Power Generation
,” International Journal of Current Engineering and Technology, INPRESSCO, Kurukshetra, India, accessed Apr. 10, 2021, https://inpressco.com/wp-content/uploads/2016/05/Paper22869-875.pdf
52.
Binama
,
M.
,
Su
,
W.-T.
,
Li
,
X.-B.
,
Li
,
F.-C.
,
Wei
,
X.-Z.
, and
An
,
S.
,
2017
, “
Investigation on Pump as Turbine (PAT) Technical Aspects for Micro Hydropower Schemes: A State-of-the-Art Review
,”
Renewable Sustainable Energy Rev.
,
79
, pp.
148
179
.10.1016/j.rser.2017.04.071
53.
Jemal
,
A. N.
, and
Haile
,
M. G.
,
2019
, “
Comprehensive Review of Pump as Turbine (PAT)
,”
J. Renewable Energy Sustainable Dev.
,
5
(
2
), pp.
68
79
.10.21622/resd.2019.05.2.068
54.
Asomani
,
S. N.
,
Yuan
,
J.
,
Wang
,
L.
,
Appiah
,
D.
, and
Zhang
,
F.
,
2020
, “
Geometrical Effects on Performance and Inner Flow Characteristics of a Pump-as-Turbine: A Review
,”
Adv. Mech. Eng.
,
12
(
4),
pp.
1
19
.10.1177/1687814020912149
55.
Amelio
,
M.
,
Barbarelli
,
S.
, and
Schinello
,
D.
,
2020
, “
Review of Methods Used for Selecting Pumps as Turbines (PATs) and Predicting Their Characteristic Curves
,”
Energies
,
13
(
23
), p.
6341
.10.3390/en13236341
56.
Celik
,
I. B.
,
Ghia
,
U.
,
Roache
,
P. J.
, and
Freitas
,
C. J.
,
2008
, “
Procedure for Estimation and Reporting of Uncertainty Due to Discretization in CFD Applications
,”
ASME J. Fluids Eng.
,
130
(
7
), p.
078001
.10.1115/1.2960953
57.
Alatorre-Frenk
,
C.
,
1994
, “
Cost Minimisation in Micro-Hydro Systems Using Pumps-as-Turbines
,” Ph.D. Thesis,
University of Warwick
,
UK
, pp.
158
187
.
58.
Derakhshan
,
S.
, and
Nourbakhsh
,
A.
,
2008
, “
Experimental Study of Characteristic Curves of Centrifugal Pumps Working as Turbines in Different Specific Speeds
,”
Exp. Therm. Fluid Sci.
,
32
(
3
), pp.
800
807
.10.1016/j.expthermflusci.2007.10.004
59.
Singh
,
P.
, and
Nestmann
,
F.
,
2010
, “
An Optimization Routine on a Prediction and Selection Model for the Turbine Operation of Centrifugal Pumps
,”
Exp. Therm. Fluid Sci.
,
34
(
2
), pp.
152
164
.10.1016/j.expthermflusci.2009.10.004
60.
Yang
,
S. S.
,
Kong
,
F. Y.
,
Jiang
,
W. M.
, and
Qu
,
X. Y.
,
2012
, “
Effects of Impeller Trimming Influencing Pump as Turbine
,”
Comput. Fluids
,
67
, pp.
72
78
.10.1016/j.compfluid.2012.07.009
61.
Shinhama
,
H.
,
Fukutomi
,
J.
,
Nakase
,
Y.
,
Chin
,
Y.
,
Kuwauchi
,
T.
, and
Miyauchi
,
S.
,
1999
, “
Study on Reverse Running Pump Turbine
,”
Trans. JSME-Ser. B
,
65
(
638
), pp.
3399
3406
.10.1299/kikaib.65.3399
62.
Li
,
W.
, and
Zhang
,
Y.
,
2016
,
Centrifugal Oil Pump Theory and Application
,
Jiangsu University Press
,
Zhenjiang
, China, pp.
193
194
.
63.
Bejan
,
A.
,
1996
, “
Entropy Generation Minimization: The New Thermodynamics of Finite-Size Devices and Finite-Time Processes
,”
J. Appl. Phys.
,
79
(
3
), pp.
1191
1218
.10.1063/1.362674
64.
Denton
,
J. D.
,
1993
, “
Loss Mechanisms in Turbomachines
,”
ASME J. Turbomach.
,
115
(
4
), pp.
621
656
.10.1115/1.2929299
65.
Moore
,
J.
, and
Moore
,
J. G.
,
1983
, “
Entropy Production Rates From Viscous Flow Calculations: Part II -Flow in a Rectangular Elbow
,”
ASME Paper No. 83-GT-71
.
66.
Natalini
,
G.
, and
Sciubba
,
E.
,
1999
, “
Minimization of the Local Rates of Entropy Production in the Design of Air-Cooled Gas Turbine Blades
,”
ASME J. Eng. Gas Turbines Power
,
121
(
3
), pp.
466
475
.10.1115/1.2818496
67.
Adeyinka
,
O. B.
, and
Naterer
,
G. F.
,
2004
, “
Modeling of Entropy Production in Turbulent Flows
,”
ASME J. Fluids Eng.
,
126
(
6
), pp.
893
899
.10.1115/1.1845551
68.
Alabi
,
K.
,
Ladeinde
,
F.
,
vonSpakovsky
,
M.
, and
Moorhouse
,
D.
,
2006
, “
Assessing CFD Modeling of Entropy Generation for the Air Frame Subsystem in an Integrated Aircraft Design/Synthesis Procedure
,”
AIAA
Paper No. 2006-587.10.2514/6.2006-587
69.
Kock
,
F.
, and
Herwig
,
H.
,
2004
, “
Local Entropy Production in Turbulent Shear Flows: A High-Reynolds Number Model With Wall Functions
,”
Int. J. Heat Mass Transfer
,
47
(
10–11
), pp.
2205
2215
.10.1016/j.ijheatmasstransfer.2003.11.025
70.
Ghisu
,
T.
,
Cambuli
,
F.
,
Puddu
,
P.
,
Mandas
,
N.
,
Seshadri
,
P.
, and
Parks
,
G. T.
,
2018
, “
Numerical Evaluation of Entropy Generation in Isolated Airfoils and Wells Turbines
,”
Meccanica
,
53
(
14
), pp.
3437
3456
.10.1007/s11012-018-0896-1
71.
Wang
,
C.
,
Zhang
,
Y.
,
Hou
,
H.
,
Yuan
,
Z.
, and
Liu
,
M.
,
2020
, “
Optimization Design of an Ultra-ow Specific-Speed Centrifugal Pump Using Entropy Production Minimization and Taguchi Method
,”
Int. J. Fluid Mach. Syst.
,
13
(
1
), pp.
55
67
.10.5293/IJFMS.2020.13.1.055
72.
Yu
,
A.
,
Tang
,
Q.
, and
Zhou
,
D.
,
2020
, “
Entropy Production Analysis in Thermodynamic Cavitating Flow With the Consideration of Local Compressibility
,”
Int. J. Heat Mass Transfer
,
153
, p.
119604
.10.1016/j.ijheatmasstransfer.2020.119604
73.
Dhakal
,
T. P.
,
Walters
,
D. K.
, and
Strasser
,
W.
,
2014
, “
Numerical Study of Gas-Cyclone Airflow: An Investigation of Turbulence Modelling Approaches
,”
Int. J. Comput. Fluid Dyn.
,
28
(
1–2
), pp.
1
15
.10.1080/10618562.2013.878800
You do not currently have access to this content.