Abstract

A predetermined flow pattern in a magnetorheological damper providing continuously variable resistance to flow is required for efficient damping of a given load. The required predetermined flow pattern rests on the a priori determination of the constitutive properties of the magnetorheological (MR) fluid determined to generate variable resistance to flow. The inverse problem of constructing the predetermined response of the damper with a specific displacement pattern of the piston in the damper for efficient damping of a given load is solved. The MR fluid in the damper is modeled as a Bingham phase change material with time-dependent yield stress offering continuously variable resistance to the flow in the piston to achieve the required specific displacement pattern. The governing equations are solved for any time history of the dimensionless yield stress of the fluid which in turn is determined from the imposed response of the damper. Analytical tools developed can be used in optimizing damper performance. The application of the method to resonance mitigation is illustrated.

References

1.
Nakamura
,
T.
,
Norihiko
,
S.
, and
Nakazawa
,
M.
,
2004
, “
Variable Viscous Control of a Homogeneous ER Fluid Device Considering Its Dynamic Characteristics
,”
Mechatronics
,
14
(
1
), pp.
55
68
.10.1016/S0957-4158(02)00095-8
2.
Lee
,
H.-G.
, and
Choi
,
S.-B.
,
2002
, “
Dynamic Properties of an ER Fluid Under Shear and Flow Modes
,”
Mater. Des.
,
23
(
1
), pp.
69
76
.10.1016/S0261-3069(01)00044-9
3.
Jolly
,
M. R.
,
Carlson
,
J. D.
, and
Muñoz
,
G. C.
,
1996
, “
Model of the Behavior of Magnetorheological Materials
,”
Smart Mater. Struct.
,
5
(
5
), pp.
607
614
.10.1088/0964-1726/5/5/009
4.
Weiss
,
K. D.
,
Carlson
,
J. D.
, and
Nixon
,
D. A.
,
1994
, “
Viscoelastic Properties of Magneto and Electrorheological Fluids
,”
J. Intell. Mater. Syst. Struct.
,
5
(
6
), pp.
772
775
.10.1177/1045389X9400500607
5.
Rabinow
,
J.
,
1948
, “
The Magnetic Fluid Clutch
,”
Trans. Am. Inst. Electr. Eng.
,
67
(
2
), pp.
1308
1315
.10.1109/T-AIEE.1948.5059821
6.
Choi
,
S.-B. A.
, and
Kim
,
W.-K.
,
2000
, “
Vibration Control of a Semi-Active Suspension Featuring Electrorheological Fluid Dampers
,”
J. Sound Vib.
,
234
(
3
), pp.
537
546
.10.1006/jsvi.1999.2849
7.
Dogruer
,
U.
,
Gordaninejad
,
F.
, and
Evrensen
,
C. A.
,
2003
, “
A New Magneto- Rheological Fluid Damper for High-Mobility Multi-Purpose Wheeled Vehicle (HMMMWV)
,”
Smart Struct. Mater.
5052
, pp.
198
206
.
8.
Hong
,
S. B.
,
Choi
,
S. B.
,
Choi
,
Y. T.
, and
Wereley
,
N. M.
,
2003
, “
Non-Dimensional Analysis for Effective Design of Semi-Active Electrorheological Damping Control Systems
,”
Proc. Inst. Mech. Eng.
,
217
(
12
), pp.
1095
1106
.10.1243/09544070360729437
9.
Lee
,
D. Y.
, and
Wereley
,
N. M.
,
1999
, “
Quasi-Steady Herschel-Bulkley Analysis of Electro and Magnetorheological Flow Mode Dampers
,”
J. Intell. Mater. Syst. Struct.
,
10
(
10
), pp.
761
769
.10.1106/E3LT-LYN6-KMT2-VJJD
10.
Lee
,
D. Y.
, and
Wereley
,
N. M.
,
2000
, “
Analysis of Electro and Magnetorheological Flow Mode Dampers Using Herschel-Bulkley Model
,”
Smart Struct. Mater.
3989
, pp.
244
255
.
11.
Mavroidis
,
C.
,
Pfeiffer
,
C.
,
Celestino
,
J.
, and
Bar-Cohen
,
Y.
,
2000
, “
Controlled Compliance Haptic Interface Using Electrorheological Fluids
,”
Smart Struct. Mater.
,
3987
, pp.
300
310
.
12.
Mavroidis
,
C.
,
Pfeiffer
,
C.
,
Lennon
,
J.
,
Paljic
,
A.
,
Celestino
,
J.
, and
Bar-Cohen
,
Y.
,
2000
, “
Modeling and Design of an Electro-Rheological Fluid Based Haptic System for Tele-Operation of Space Robots
,”
Proceedings of the Fourth International Conference on Exposition/Demonstration on Robotics for Challenging Situations and Environments
,
American Society of Civil Engineers
, Reston, VA, pp.
174
180
.
13.
Oh
,
H.-U.
, and
Onoda
,
J.
,
2002
, “
An Experimental Study of a Semi Active Magnetorheological Fluid Variables Damper for Vibration Suppression of Truss Structures
,”
Smart Mater. Struct.
,
11
(
1
), pp.
156
162
.10.1088/0964-1726/11/1/318
14.
Truong
,
T. D.
, and
Semercigil
,
S. E.
,
2001
, “
A Variable Damping Tuned Absorber With Electro-Rheological Fluid for Transient Resonance of Light Structures
,”
J. Sound Vib.
,
239
(
5
), pp.
891
905
.10.1006/jsvi.1999.3178
15.
Liu
,
M.
,
Sethi
,
V.
,
Song
,
G.
, and
Li
,
H.
,
2008
, “
Investigation of Locking Force for Stay Cable Vibration Control Using Magnetorheological Fluid Damper
,”
ASME J. Vib. Acoust.
,
130
(
5
), p.
054504
.10.1115/1.2948390
16.
Gordaninejad
,
F.
,
Wang
,
X.
,
Hitchcock
,
G.
,
Bangrakulur
,
K.
,
Ruan
,
S.
, and
Siino
,
M.
,
2010
, “
Modular High-Force Seismic Magnetorheological Fluid Damper
,”
J. Struct. Eng.
,
136
(
2
), pp.
135
143
.10.1061/(ASCE)0733-9445(2010)136:2(135)
17.
Li
,
Z. C.
, and
Wang
,
J.
,
2012
, “
A Gun Recoil System Employing Magnetorheological Fluid Damper
,”
Smart Mater. Struct.
,
21
(
10
), p.
105003
.10.1088/0964-1726/21/10/105003
18.
Wang
,
D. H.
, and
Liao
,
W. H.
,
2009
, “
Semi-Active Suspension Systems for Railway Vehicles Using Magnetorheological Dampers. Part I: System Integration and Modelling
,”
Veh. Syst. Dyn.
,
47
(
11
), pp.
1305
1325
.10.1080/00423110802538328
19.
Qiu
,
J.
,
Tani
,
J.
, and
Hajika
,
T.
,
1999
, “
Damping Effect of Multi-Layer Beams With Embedded Electro-Rheological Fluid
,”
J. Intell. Mater. Syst. Struct.
,
10
(
7
), pp.
521
529
.10.1106/R4HQ-F2M0-QGY3-NVV8
20.
Sternberg
,
A.
,
Zemp
,
R.
, and
de la Llera
,
J. C.
,
2014
, “
Multiphysics Behavior of a Magneto-Rheological Damper and Experimental Validation
,”
Eng. Struct.
,
69
, pp.
194
205
.10.1016/j.engstruct.2014.03.016
21.
Zheng
,
J.
,
Li
,
Z.
,
Koo
,
J.
, and
Wang
,
J.
,
2014
, “
Magnetic Circuit Design and Multiphysics Analysis of a Novel MR Damper for Applications Under High Velocity
,”
Adv. Mech. Eng.
,
6
, p.
402501
.10.1155/2014/402501
22.
de Vicente
,
J.
,
Klingenberg
,
D. J.
, and
Hidalgo-Alvarez
,
R.
,
2011
, “
Magnetorheological Fluids: A Review
,”
Soft Matter
,
7
(
8
), pp.
3701
3710
.10.1039/c0sm01221a
23.
Zhu
,
X.
,
Jing
,
X.
, and
Cheng
,
L.
,
2012
, “
Magnetorheological Fluid Dampers: A Review on Structure Design and Analysis
,”
J. Intell. Mater. Syst. Struct.
,
23
(
8
), pp.
839
873
.10.1177/1045389X12436735
24.
Ghaffari
,
A.
,
Hashemabadi
,
S. H.
, and
Ashtiani
,
M.
,
2015
, “
A Review on the Simulation and Modeling of Magnetorheological Fluids
,”
J. Intell. Mater. Syst. Struct.
,
26
(
8
), pp.
881
904
.10.1177/1045389X14546650
25.
Dang
,
A.
,
Ooi
,
L.
,
Fales
,
J.
, and
Stroeve
,
P.
,
2000
, “
Yield Stress Measurements of Magnetorheological Fluids in Tubes
,”
Ind. Eng. Chem. Res.
,
39
(
7
), pp.
2269
2274
.10.1021/ie9908276
26.
Song
,
X.
,
Ahmadian
,
M.
, and
Southward
,
S.
,
2005
, “
Superharmonics Free Adaptive Semiactive Magneto-Rheological Suspension
,”
ASME
Paper No. IMECE 2005-79355.10.1115/2005-79355
You do not currently have access to this content.