Abstract

Bubble oscillations generated by underwater explosions (UNDEX) can cause considerable damage to nearby marine vehicles or hydraulic structures as the energy inside the bubble is comparable to that of a shock wave. Since both compressibility and gravity affect the bubble impulse, it is not easy to reproduce the pulse pressure by experiments in vacuum tanks or pressurized tanks. This study presents the promising prospect of using a centrifuge to model bubble motion. Primarily, the influence of gravitational acceleration on bubble oscillation and migration is studied. Hypergravity is not only a necessary condition to satisfy the similarity of the Mach and Froude numbers but can also reduce the boundary effects and corresponding errors when modeling a bubble in a confined container. The scaling laws derived from the physical processes of bubble dynamics and the similarities in bubble shapes and migration are validated. Moreover, the main sources of possible errors for an UNDEX in a centrifuge are discussed to show the reliability of the results followed by suggestions for reducing the error in the physical modeling of an UNDEX event.

References

1.
Cole
,
R. H.
,
1948
,
Underwater Explosions
,
Princeton University Press
,
Princeton, NJ
.
2.
Zong
,
Z.
,
Wang
,
J.-X.
,
Zhou
,
L.
, and
Zhang
,
G.-Y.
,
2015
, “
Fully Nonlinear 3D Interaction of Bubble Dynamics and a Submerged or Floating Structure
,”
Appl. Ocean. Res.
,
53
, pp.
236
249
.10.1016/j.apor.2015.09.011
3.
Jayaprakash
,
A.
,
Hsiao
,
C. T.
, and
Chahine
,
G.
,
2012
, “
Numerical and Experimental Study of the Interaction of a Spark-Generated Bubble and a Vertical Wall
,”
ASME J. Fluids Eng.
,
134
(
3
), p.
031301
.10.1115/1.4005688
4.
Skinner
,
C. J.
,
2008
, “
NCSM: The Collins Class Submarine: National Benefits and Costs
,”
Headmark
,
129
, pp.
28
34
.
5.
Rayleigh
,
L.
,
1917
, “
On the Pressure Developed in a Liquid During the Collapse of a Spherical Cavity
,”
Philos. Mag.
,
6
, pp.
94
98
.10.1080/14786440808635681
6.
Prosperetti
,
A.
, and
Lezzi
,
A.
,
1986
, “
Bubble Dynamics in a Compressible Liquid—Part 1: First-Order Theory
,”
J. Fluid. Mech.
,
168
(
1
), pp.
457
478
.10.1017/S0022112086000460
7.
Lezzi
,
A.
, and
Prosperetti
,
A.
,
1987
, “
Bubble Dynamics in a Compressible Liquid—Part 2: Second-Order Theory
,”
J. Fluid. Mech.
,
185
, pp.
289
321
.10.1017/S0022112087003185
8.
Prosperetti
,
A.
,
Crum
,
L. A.
, and
Commander
,
K. W.
,
1988
, “
Nonlinear Bubble Dynamics
,”
J. Acoust. Soc. Am.
,
83
(
2
), pp.
502
514
.10.1121/1.396145
9.
Colonius
,
T.
,
d'Auria
,
F.
, and
Brennen
,
C. E.
,
2000
, “
Acoustic Saturation in Bubbly Cavitating Flow Adjacent to an Oscillating Wall
,”
Phys. Fluids
,
12
(
11
), pp.
2752
2761
.10.1063/1.1313561
10.
Vernon
,
T. A.
,
1986
, “
Whipping Response of Ship Hulls From Underwater Explosion Bubble Loading
,” Defence Research Establishment Atlantic, Dartmouth, NS, Report No. DREA-TM-86/225.
11.
Geers
,
T. L.
, and
Hunter
,
K. S.
,
2002
, “
An Integrated Wave-Effects Model for an Underwater Explosion Bubble
,”
J. Acoust. Soc. Am.
,
111
(
4
), pp.
1584
1601
.10.1121/1.1458590
12.
Barras
,
G.
,
Souli
,
M.
,
Aquelet
,
N.
, and
Couty
,
N.
,
2012
, “
Numerical Simulation of Underwater Explosions Using an ALE Method. The Pulsating Bubble Phenomena
,”
Ocean. Eng.
,
41
, pp.
53
66
.10.1016/j.oceaneng.2011.12.015
13.
Wilkerson
,
S.
,
1992
, “
A Boundary Integral Approach for Three-Dimensional Underwater Explosion Bubble Dynamics
,” Army Ballistic Research Lab, Aberdeen Proving Ground, MD, Report No. BRL-TR-3365.
14.
Yuan
,
H.
, and
Prosperetti
,
A.
,
1997
, “
Gas-Liquid Heat Transfer in a Bubble Collapsing Near a wall
,”
Phys. Fluids
,
9
(
1
), pp.
127
142
.10.1063/1.869153
15.
Zhang
,
Y. L.
,
Yeo
,
K. S.
,
Khoo
,
B. C.
, and
Wang
,
C.
,
2001
, “
3D Jet Impact and Toroidal Bubbles
,”
J. Comput. Phys.
,
166
(
2
), pp.
336
360
.10.1006/jcph.2000.6658
16.
Maeda
,
K.
, and
Colonius
,
T.
,
2019
, “
Bubble Cloud Dynamics in an Ultrasound Field
,”
J. Fluid. Mech.
,
862
, pp.
1105
1134
.10.1017/jfm.2018.968
17.
Swegle
,
J. W.
, and
Attaway
,
S. W.
,
1995
, “
On the Feasibility of Using Smoothed Particle Hydrodynamics for Underwater Explosion Calculations
,”
Comput. Mech.
,
17
(
3
), pp.
151
168
.10.1007/BF00364078
18.
Sasaki
,
K.
,
Nakano
,
T.
,
Soliman
,
W.
, and
Takada
,
N.
,
2009
, “
Effect of Pressurization on the Dynamics of a Cavitation Bubble Induced by Liquid-Phase Laser Ablation
,”
Appl. Phys. Express
,
2
(
4
), p.
046501
.10.1143/APEX.2.046501
19.
Goertner
,
J. F.
,
1956
, “
Vacuum Tank Studies of Gravity Migration of Underwater Explosion Bubbles
,” Naval Ordnance Laboratory, White Oak, MD, Navord Report No. 3902.
20.
Cui
,
J.
,
2013
, “
Experimental Study on Underwater Explosion Bubble Loads and Damage on the Structure Nearby
,” Ph.D. dissertation, Harbin Engineering University, Harbin, China (in Chinese).
21.
Goertner
,
J. F.
,
Hendrickson
,
J. R.
, and
Leamon
,
R. G.
,
1969
, “
Model Studies of the Behavior of Underwater Explosion Bubbles in Contact With a Rigid Bottom
,” Naval Ordnance Lab, White Oak, MD, Report No. AD851749.
22.
Xiao
,
W.
,
Zhang
,
A. M.
, and
Wang
,
S. P.
,
2016
, “
Investigation of Bubble Dynamics of Underwater Explosion Based on Improved Compressible Numerical Model
,”
Appl. Ocean. Res.
,
59
, pp.
472
482
.10.1016/j.apor.2016.07.007
23.
Snay
,
H. G.
,
1962
, “
The Scaling of Underwater Explosion Phenomena
,” Naval Ordnance Lab, White Oak, MD, Report No. AD0271468.
24.
Price
,
R. S.
,
1961
, “
Underwater Explosion Tests in a Preliminary High-Gravity Tank Accelerated by a Centrifuge
,” Naval Ordnance Lab, White Oak, MD, Report No. AD0264760.
25.
Price
,
R. S.
,
Zuke
,
W. G.
, and
Infosino
,
C.
,
1964
, “
A Study of Underwater Explosions in a High Gravity Tank
,” Naval Ordnance Lab, White Oak, MD, Report No. AD352834.
26.
Vanadit-Ellis
,
W.
, and
Davis
,
L. K.
,
2010
, “
Physical Modeling of Concrete Gravity Dam Vulnerability to Explosions
,” IEEE
International Waterside Security Conference
(
WSS
), Carrara, Italy, Nov. 3–5, pp.
1
11
.10.1109/WSSC.2010.5730291
27.
De
,
A.
,
Niemiec
,
A.
, and
Zimmie
,
T. F.
,
2017
, “
Physical and Numerical Modeling to Study Effects of an Underwater Explosion on a Buried Tunnel
,”
J. Geotech. Geoenviron. Eng.
,
143
(
5
), pp.
04017002
10.1061/(ASCE)GT.1943-5606.0001638
28.
Hu
,
J.
,
Chen
,
Z. Y.
,
Zhang
,
X.
,
Wei
,
Y. Q.
,
Liang
,
X.
,
Liang
,
J.
,
Ma
,
G.
,
Wang
,
Q.
, and
Long
,
Y.
,
2017
, “
Underwater Explosion in Centrifuge—Part I: Validation and Calibration of Scaling Laws
,”
Sci. China. Tech. Sci.
,
60
(
11
), pp.
1638
1657
.10.1007/s11431-017-9083-0
29.
Ge
,
S.
,
Zu-yu
,
C.
,
Yuan
,
L.
,
Ming-shou
,
Z.
, and
Jian-yu
,
W.
,
2017
, “
Experimental and Numerical Investigation of the Centrifugal Model for Underwater Explosion Shock Wave and Bubble Pulsation
,”
Ocean Engineering
,
142
, pp.
523
531
.10.1016/j.oceaneng.2017.04.035
30.
Long
,
Y.
,
Zhou
,
H.
,
Liang
,
X.
,
Song
,
G.
,
Chen
,
Z. Y.
,
Hu
,
J.
,
Wang
,
Q.
,
Zhang
,
X.
,
Liang
,
J.
, and
Huang
,
Z.
,
2017
, “
Underwater Explosion in Centrifuge—Part II: Dynamic Responses of Defensive Steel Plate
,”
Sci. China. Tech. Sci.
,
60
(
12
), pp.
1941
1957
.10.1007/s11431-017-9107-2
31.
Hu
,
J.
,
Chen
,
Z. Y.
,
Wei
,
Y. Q.
,
Zhang, X.
,
Liang, J
., and
Huang
,
Z.
,
2017
, “
Centrifuge Modeling on Dynamic Response of Water Retaining Structure by Underwater Explosion
,”
Chin. J. Hydraul. Eng.
,
48
(
9
), pp.
1073
1081 (in Chinese
).10.13243/j.cnki.slxb.20170592
32.
Ha
,
J. G.
,
Lee
,
S.-H.
,
Kim
,
D.-S.
, and
Choo
,
Y. W.
,
2014
, “
Simulation of Soil–Foundation–Structure Interaction of Hualien Large-Scale Seismic Test Using Dynamic Centrifuge Test
,”
Soil. Dyn. Earthq. Eng.
,
61–62
, pp.
176
187
.10.1016/j.soildyn.2014.01.008
33.
Arons
,
A. B.
, and
Yennie
,
D. R.
,
1948
, “
Energy Partition in Underwater Explosion Phenomena
,”
Rev. Mod. Phys.
,
20
(
3
), pp.
519
536
.10.1103/RevModPhys.20.519
34.
Best
,
J. P.
,
2002
, “
The Effect of Non-Spherical Collapse on Determination of Explosion Bubble Parameters
,” Defense Science and Technology Organization, Canberra, Australia, Report No. ADA407861.
35.
Blake
,
J. R.
,
Taib
,
B. B.
, and
Doherty
,
G.
,
1986
, “
Transient Cavities Near Boundaries—Part 1: Rigid Boundary
,”
J. Fluid Mech.
,
170
, pp.
479
497
.10.1017/S0022112086000988
36.
Snay
,
H. G.
,
1962
, “
Migration of Explosion Bubbles in a Rotating Test Tank
,” U.S. Naval Ordnance Lab, White Oak, MD, Report No. NOL TR
61
145
.
You do not currently have access to this content.