Abstract

The characteristics of sprays from a recessed gas-centered swirl coaxial atomizer (RGCSCA) with gas to liquid momentum flux ratio, J of the spray in the range of 2–66 are studied experimentally through the analysis of spray morphologies and droplets characteristics. The process of fully developed spray (spray free from ligaments/droplets clusters and nonspherical droplets) in the atomizer is quantified. In the RGCSCA, the distance from the atomizer exit to the fully developed spray zone decreases with increase in J. Detailed measurements of size (in the range of 6–378 μm) and velocity (in the range of 35–176 m/s) characteristics of spray droplets are carried out using phase Doppler interferometry (PDI) in the fully developed spray. The spray from the RGCSCA is comprised of two distinct spray morphologies: a central dense spray of finer droplets and an outer coarse spray. The mean drop size of the central spray exhibits a decreasing trend with the increase in J whereas that of the outer coarse spray is independent of J. The radial profiles of the mean velocities of sprays at different J are presented. For the sprays with low inertia liquid sheets, the shape of mean axial velocity profiles is Gaussian.

References

1.
Lightfoot
,
M. D. A.
,
Danczyk
,
S. A.
, and
Talley
,
D. G.
,
2006
, “
Atomization in Gas-Centered Swirl Coaxial Injectors
,”
Proceedings of 19th Annual Conference on Liquid Atomization and Spray Systems
, Toronto, ON, Canada, May
24
26
.
2.
Lightfoot
,
M. D. A.
,
Danczyk
,
S. A.
, and
Talley
,
D. G.
,
2008
, “
Atomization Rate of Gas-Centered Swirl Coaxial Injectors
,”
Proceedings of 21st Annual Conference on Liquid Atomization and Spray Systems
, Orlando, FL, May
18
21
.
3.
Kulkarni
,
V.
,
Sivakumar
,
D.
,
Oommen
,
C.
, and
Tharakan
,
T. J.
,
2010
, “
Liquid Sheet Breakup in Gas-Centered Swirl Coaxial Atomizers
,”
ASME J. Fluids Eng.
,
132
(
1
), p.
011303
.10.1115/1.4000737
4.
Jeon
,
J.
,
Hong
,
M.
,
Han
,
Y. M.
, and
Lee
,
S. Y.
,
2011
, “
Experimental Study on Spray Characteristics of Gas-Centered Swirl Coaxial Injectors
,”
ASME J. Fluids Eng.
,
133
(
12
), p.
121303
.10.1115/1.4005344
5.
Sivakumar
,
D.
, and
Kulkarni
,
V.
,
2011
, “
Regimes of Spray Formation in Gas-Centered Swirl Coaxial Atomizers
,”
Exp. Fluids
,
51
(
3
), pp.
587
596
.10.1007/s00348-011-1073-7
6.
Matas
,
J.-P.
,
Hong
,
M.
, and
Cartellier
,
A.
,
2014
, “
Stability of a Swirling Liquid Film Entrained by a Fast Gas Stream
,”
Phys. Fluids
,
26
(
4
), p.
042108
.10.1063/1.4871395
7.
Park
,
G.
,
Lee
,
J.
,
Lee
,
I.
,
Yoon
,
Y.
, and
Sohn
,
C. H.
,
2017
, “
Geometric Effect on Spray Characteristics of a Gas-Centered Swirl Coaxial Injectors: Recess Ratio and Gap Thickness
,”
Atomization Sprays
,
27
(
7
), pp.
579
589
.10.1615/AtomizSpr.2017018958
8.
Siddharth
,
K. S.
,
Panchagnula
,
M. V.
, and
Tharakan
,
T. J.
,
2017
, “
Effect of Gas Swirl on the Performance of a Gas-Centered Swirl Co-Axial Injector
,”
Atomization Sprays
,
27
(
8
), pp.
741
757
.10.1615/AtomizSpr.2017019923
9.
Zhang
,
L.
,
Wang
,
X.
,
Li
,
Y.
,
Yeh
,
S.-T.
, and
Yang
,
V.
,
2018
, “
Supercritical Fluid Flow Dynamics and Mixing in Gas-Centered Liquid-Swirl Coaxial Injectors
,”
Phys. Fluids
,
30
(
7
), p.
075106
.10.1063/1.5026786
10.
Mansour
,
A.
, and
Chigier
,
N.
,
1990
, “
Disintegration of Liquid Sheets
,”
Phys. Fluids A
,
2
(
5
), pp.
706
719
.10.1063/1.857724
11.
Stapper
,
B. E.
,
Sowa
,
W. A.
, and
Samuelsen
,
G. S.
,
1992
, “
An Experimental Study of the Effects of Liquid Properties on the Breakup of a Two-Dimensional Liquid Sheet
,”
ASME J. Eng. Gas Turbines Power
,
114
(
1
), pp.
39
45
.10.1115/1.2906305
12.
Lozano
,
A.
,
Barreras
,
F.
,
Hauke
,
G.
, and
Dopazo
,
C.
,
2001
, “
Longitudinal Instabilities in an Air-Blasted Liquid Sheet
,”
J. Fluid Mech.
,
437
, pp.
143
173
.10.1017/S0022112001004268
13.
Carvalho
,
I. S.
,
Heitor
,
M. V.
, and
Santos
,
D.
,
2002
, “
Liquid Film Disintegration Regimes and Proposed Correlations
,”
Int. J. Multiphase Flow
,
28
(
5
), pp.
773
789
.10.1016/S0301-9322(01)00088-X
14.
Park
,
J.
,
Huh
,
K. Y.
,
Li
,
X.
, and
Renksizbulut
,
M.
,
2004
, “
Experimental Investigations on Cellular Breakup of a Planar Liquid Sheet From an Air-Blast Nozzle
,”
Phys. Fluids
,
16
(
3
), pp.
625
632
.10.1063/1.1644575
15.
Lozano
,
A.
,
Barreras
,
F.
,
Siegler
,
C.
, and
Löw
,
D.
,
2005
, “
The Effects of Sheet Thickness on the Oscillation of an Air-Blasted Liquid Sheet
,”
Exp. Fluids
,
39
(
1
), pp.
127
139
.10.1007/s00348-005-0989-1
16.
Déjean
,
B.
,
Berthoumieu
,
P.
, and
Gajan
,
P.
,
2016
, “
Experimental Study on the Influence of Liquid and Air Boundary Conditions on a Planar Air-Blasted Liquid Sheet, Part I: Liquid and Air Thicknesses
,”
Int. J. Multiphase Flow
,
79
, pp.
202
213
.10.1016/j.ijmultiphaseflow.2015.09.002
17.
Shen
,
J.
, and
Li
,
X.
,
1996
, “
Instability of an Annular Viscous Liquid Jet
,”
Acta Mechanica
,
114
(1–4), pp.
167
183
.10.1007/BF01170402
18.
Shen
,
J.
, and
Li
,
X.
,
1996
, “
Breakup of Annular Viscous Liquid Jets in Two Gas Streams
,”
J. Prop. Power
,
12
(
4
), pp.
752
759
.10.2514/3.24098
19.
Jazayeri
,
S.
, and
Li
,
X.
,
2000
, “
Nonlinear Instability of Plane Liquid Sheets
,”
J. Fluid Mech.
,
406
, pp.
281
308
.10.1017/S0022112099007491
20.
Duke
,
D.
,
Honnery
,
D.
, and
Soria
,
J.
,
2012
, “
Experimental Investigation of Nonlinear Instabilities in Annular Liquid Sheets
,”
J. Fluid Mech.
,
691
, pp.
594
604
.10.1017/jfm.2011.516
21.
Yan
,
K.
,
Jog
,
M. A.
, and
Ning
,
Z.
,
2013
, “
Nonlinear Spatial Instability of an Annular Swirling Viscous Liquid Sheet
,”
Acta Mech.
,
224
(
12
), pp.
3071
3090
.10.1007/s00707-013-0896-0
22.
Strasser
,
W.
, and
Battaglia
,
F.
,
2016
, “
Identification of Pulsation Mechanism in a Transonic Three-Stream Airblast Injector
,”
ASME J. Fluids Eng.
,
138
(
11
), p.
111303
.10.1115/1.4033422
23.
Lavergne
,
G.
,
Trichet
,
P.
,
Hebrard
,
P.
, and
Biscos
,
Y.
,
1993
, “
Liquid Sheet Disintegration and Atomization Process on a Simplified Airblast Atomizer
,”
ASME J. Eng. Gas Turbines Power
,
115
(
3
), pp.
461
466
.10.1115/1.2906731
24.
Li
,
X.
, and
Shen
,
J.
,
1999
, “
Experimental Study of Sprays From Annular Liquid Jet Breakup
,”
J. Prop. Power
,
15
(
1
), pp.
103
110
.10.2514/2.5397
25.
Leboucher
,
N.
,
Roger
,
F.
, and
Carreau
,
J.-L.
,
2012
, “
Characteristics of the Spray Produced by the Atomization of an Annular Liquid Sheet Assisted by an Inner Gas Jet
,”
Atomization Sprays
,
22
(
6
), pp.
515
542
.10.1615/AtomizSpr.2012004530
26.
Kundu
,
P. K.
, and
Cohen
,
I. M.
,
2002
,
Fluid Mechanics
, 2nd ed.,
Academic Press
,
San Diego, CA
.
27.
Bachalo
,
W. D.
, and
Houser
,
M. J.
,
1984
, “
Phase/Doppler Spray Analyzer for Simultaneous Measurements of Drop Size and Velocity Distributions
,”
Opt. Eng.
,
23
(
5
), pp.
585
590
. 10.1117/12.7973341
28.
Albrecht
,
H. E.
,
Borys
,
M.
,
Damaschke
,
N.
, and
Tropea
,
C.
,
2003
,
Laser Doppler and Phase Doppler Measurement Techniques
,
Springer-Verlag
,
Berlin
.
29.
Duke
,
D.
,
Honnery
,
D.
, and
Soria
,
J.
,
2010
, “
A Cross-Correlation of Velocimetry Technique for Breakup of an Annular Liquid Sheet
,”
Exp. Fluids
,
49
(
2
), pp.
435
445
.10.1007/s00348-009-0817-0
30.
Liepmann
,
H. W.
, and
Roshko
,
A.
,
2007
,
Elements of Gas Dynamics, Firat South Asian Edition
,
Dover Publications
,
Mineola, NY
.
31.
Abramaoff
,
M. D.
,
Magalhaes
,
P. J.
, and
Ram
,
S. J.
,
2004
, “
Image Processing Using ImageJ
,”
Biophotonics Int.
,
11
(
7
), pp.
36
42
.https://dspace.library.uu.nl/handle/1874/204900
32.
Tratnig
,
A.
, and
Brenn
,
G.
,
2010
, “
Drop Size Spectra in Sprays From Pressure-Swirl Atomizers
,”
Int. J. Multiphase Flow
,
36
(
5
), pp.
349
363
.10.1016/j.ijmultiphaseflow.2010.01.008
You do not currently have access to this content.