Abstract

In this work, we aim to develop a mathematical model for capillary filling dynamics of electromagnetohydrodynamic flow of non-Newtonian fluids. An axially applied electric field and a transverse magnetic field are considered to elucidate the electromagnetohydrodynamic transport through the microcapillary. Assuming a non-Newtonian power-law obeying fluids, we analyze the transient evolution of the electromagnetohydrodynamic capillary positions by considering the magnitude of the total force balance via finite volume-based numerical formalism. We have highlighted the various rheological regimes in the horizontal capillary through a scaling analysis. For the Newtonian fluids, corresponding inviscid linear Washburn regime is also analyzed and compared with the power-law obeying fluids. Furthermore, we have also derived closed-form analytical expressions for the electromagnetohydrodynamic velocity, pressure gradient, and transient evolution of the capillary positions by using couple stress parameter model to characterize the fluid rheological behaviors. We perform a comparison test of the coupled stress parameter model with the results from the literature for a similar set of fluid rheological parameters. The comparison results are found to be in good agreement.

References

1.
Probstein
,
R. F.
,
1994
,
Physicochemical Hydrodynamics: An Introduction
, 2nd ed.,
Wiley and Sons
,
New York
.
2.
Desai
,
N.
,
Ghosh
,
U.
, and
Chakraborty
,
S.
,
2014
, “
Capillary Filling Under Electro-Osmotic Effects in the Presence of Electromagneto-Hydrodynamic Effects
,”
Phys. Rev. E
,
89
(
6
), p.
063017
.10.1103/PhysRevE.89.063017
3.
Chakraborty
,
S.
,
2007
, “
Electroosmotically Driven Capillary Transport of Typical Non-Newtonian Biofluids in Rectangular Microchannels
,”
Anal. Chim. Acta
,
605
(
2
), pp.
175
184
.10.1016/j.aca.2007.10.049
4.
Dreyer
,
M.
,
Delgado
,
A.
, and
Path
,
H.-J.
,
1994
, “
Capillary Rise of Liquid Between Parallel Plates Under Microgravity
,”
J. Colloid Interface Sci.
,
163
(
1
), pp.
158
168
.10.1006/jcis.1994.1092
5.
Mandal
,
P.
,
Dey
,
R.
, and
Chakraborty
,
S.
,
2012
, “
Electrokinetics With ‘Paper-and-Pencil’ Devices
,”
Lab Chip
,
12
(
20
), pp.
4026
4028
.10.1039/c2lc40681k
6.
van Honschoten
,
J. W.
,
Brunets
,
N.
, and
Tas
,
N. R.
,
2010
, “
Capillarity at the Nanoscale
,”
Chem. Soc. Rev.
,
39
(
3
), pp.
1096
1114
.10.1039/b909101g
7.
Mondal
,
P. K.
,
Ghosh
,
U.
,
Bandopadhyay
,
A.
,
Dasgupta
,
D.
, and
Chakraborty
,
S.
,
2013
, “
Electric-Field-Driven Contact-Line Dynamics of Two Immiscible Fluids Over Chemically Patterned Surfaces in Narrow Confinements
,”
Phys. Rev. E
,
88
(
2
), p.
023022
.10.1103/PhysRevE.88.023022
8.
Keh
,
H. J.
, and
Tseng
,
H. C.
,
2001
, “
Transient Electrokinetic Flow in Fine Capillaries
,”
J. Colloid Interface Sci.
,
242
(
2
), pp.
450
459
.10.1006/jcis.2001.7797
9.
Herr
,
A. E.
,
Molho
,
J. I.
,
Santiago
,
J. G.
,
Mungal
,
M. G.
,
Kenny
,
T. W.
, and
Garguilo
,
M. G.
,
2000
, “
Electroosmotic Capillary Flow With Nonuniform Zeta Potential
,”
Anal. Chem.
,
72
(
5
), pp.
1053
1057
.10.1021/ac990489i
10.
Srivastava
,
N.
, and
Burns
,
M. A.
,
2006
, “
Analysis of Non-Newtonian Liquids Using a Microfluidic Capillary Viscometer
,”
Anal. Chem.
,
78
(
5
), pp.
1690
1696
.10.1021/ac0518046
11.
Chibbaro
,
S.
,
2008
, “
Capillary Filling With Pseudo-Potential Binary Lattice-Boltzmann Model
,”
Eur. Phys. J. E
,
27
(
1
), pp.
99
106
.10.1140/epje/i2008-10369-4
12.
Diotallevi
,
F.
,
Biferale
,
L.
,
Chibbaro
,
S.
,
Pontrelli
,
G.
,
Toschi
,
F.
, and
Succi
,
S.
,
2009
, “
Lattice Boltzmann Simulations of Capillary Filling: Finite Vapour Density Effects
,”
Eur. Phys. J. Spec. Top.
,
171
(
1
), pp.
237
243
.10.1140/epjst/e2009-01034-6
13.
Saha
,
A. A.
, and
S. K
,
M.
,
2009
, “
Numerical Study of Capillary Flow in Microchannels With Alternate Hydrophilic-Hydrophobic Bottom Wall
,”
ASME J. Fluids Eng.
,
131
(
6
), p.
061202
.10.1115/1.3129130
14.
Akbar
,
N. S.
, and
Butt
,
A. W.
,
2015
, “
Physiological Transportation of Casson Fluid in a Plumb Duct
,”
Commun. Theor. Phys.
,
63
(
3
), pp.
347
352
.10.1088/0253-6102/63/3/347
15.
Jaffrin
,
M. Y.
, and
Shapiro
,
A. H.
,
1971
, “
Peristaltic Pumping
,”
Annu. Rev. Fluid Mech.
,
3
(
1
), pp.
13
37
.10.1146/annurev.fl.03.010171.000305
16.
Washburn
,
E. D.
,
1921
, “
The Dynamics of Capillary Flow
,”
Phys. Rev.
,
17
(
3
), p.
273
.10.1103/PhysRev.17.273
17.
Provost
,
A. M.
, and
Schwarz
,
W. H.
,
1994
, “
A Theoretical Study of Viscous Effects in Peristaltic Pumping
,”
J. Fluid Mech.
,
279
, pp.
177
195
.10.1017/S0022112094003873
18.
Porzrikidis
,
C.
,
1987
, “
A Study of Peristaltic Flow
,”
J. Fluid Mech.
,
180
, pp.
515
527
.10.1017/S0022112087001939
19.
Lark
,
P. D.
,
1978
, “
An Experimental Study of the Washburn Equation for Liquid Flow in Very Fine Capillaries
,”
J. Colloid Interface Sci.
,
69
(
3
), pp.
486
492
.
20.
Joseph
,
D. D.
, and
Renardy
,
Y. Y.
,
2012
,
Fundamentals of Two-Fluid Dynamics
,
Springer-Verlag
,
New York
.
21.
Bird
,
R. B.
,
Stewart
,
W. E.
, and
Lightfoot
,
E. N.
, 2014, Transport Phenomena, 2nd ed., Wiley India Pvt. Ltd., New Delhi, India.
22.
Loughran
,
M.
,
Tsai
,
S. W.
,
Yokoyama
,
K.
, and
Karube
,
I.
,
2003
, “
Simultaneous Iso-Electric Focusing of Proteins in a Micro-Fabricated Capillary Coated With Hydrophobic and Hydrophilic Plasma Polymerized Films
,”
Curr. Appl. Phys.
,
3
(
6
), pp.
495
499
.10.1016/j.cap.2003.09.002
23.
Bandopadhyay
,
A.
,
Ghosh
,
U.
, and
Chakraborty
,
S.
,
2014
, “
Capillary Filling Dynamics of Viscoelastic Fluids
,”
Phys. Rev. E
,
89
(
5
), p.
053024
.10.1103/PhysRevE.89.053024
24.
Tso
,
C. P.
, and
Sundaravadivelu
,
K.
,
2001
, “
Capillary Flow Between Parallel Plates in the Presence of an Electromagnetic Field
,”
J. Phys. D: Appl. Phys.
,
34
(
24
), pp.
3522
3527
.10.1088/0022-3727/34/24/317
25.
Quere
,
D.
,
1977
, “
Inertial Capillarity
,”
Europhys. Lett.
,
39
(
5
), p.
533
.10.1209/epl/i1997-00389-2
26.
Chakraborty
,
S.
,
2006
, “
Augmentation of Peristaltic Microflows Through Electroosmotic Mechanisms
,”
J. Phys. D: Appl. Phys.
,
39
(
24
), pp.
5356
5363
.10.1088/0022-3727/39/24/037
27.
Das
,
S.
, and
Chakraborty
,
S.
,
2006
, “
Analytical Solutions for Velocity, Temperature and Concentration Distribution in Electroosmotic Microchannel Flows of a Non-Newtonian Bio-Fluid
,”
Anal. Chim. Acta
,
559
(
1
), pp.
15
24
.10.1016/j.aca.2005.11.046
28.
Zhao
,
Y. Q.
, and
Yan
,
Y. Y.
,
2006
, “
Numerical Simulation of Electroosmotic Flow Near Earthworm Surface
,”
J. Bionic Eng.
,
3
(
4
), pp.
179
186
.10.1016/S1672-6529(07)60001-8
29.
Burgreen
,
D.
, and
Nakache
,
F. R.
,
1964
, “
Electrokinetic Flow in Ultrafine Capillary Slits
,”
J. Phys. Chem.
,
68
(
5
), pp.
1084
1091
.10.1021/j100787a019
30.
Richert
,
H.
,
Surzhenko
,
O.
,
Wangemann
,
S.
,
Heinrich
,
J.
, and
Görnert
,
P.
,
2005
, “
Development of a Magnetic Capsule as a Drug Release System for Future Applications in the Human GI Tract
,”
J. Magn. Magn. Mater.
,
2
93
(
1
), pp.
497
500
.10.1016/j.jmmm.2005.01.065
31.
Ramesh
,
K.
, and
Devakar
,
M.
,
2015
, “
Magnetohydrodynamic Peristaltic Transport of Couple Stress Fluid Through Porous Medium in an Inclined Asymmetric Channel With Heat Transfer
,”
J. Magn. Magn. Mater.
,
394
, pp.
335
348
.10.1016/j.jmmm.2015.06.052
32.
Tripathi
,
D.
,
Bég
,
O. A.
,
Gupta
,
P. K.
,
Radhakrishnamacharya
,
G.
, and
Mazumdar
,
J.
,
2015
, “
DTM Simulation of Peristaltic Viscoelastic Biofluid Flow in Asymmetric Porous Media: A Digestive Transport Model
,”
J. Bionic Eng.
,
12
(
4
), pp.
643
655
.10.1016/S1672-6529(14)60154-2
33.
Shit
,
G. C.
, and
Majee
,
S.
,
2015
, “
Pulsatile Flow of Blood and Heat Transfer With Variable Viscosity Under Magnetic and Vibration Environment
,”
J. Magn. Magn. Mater.
,
388
, pp.
106
115
.10.1016/j.jmmm.2015.04.026
34.
Escandona
,
J.
,
Santiago
,
F.
,
Bautista
,
O.
, and
Mendez
,
F.
,
2014
, “
Hydrodynamics and Thermal Analysis of a Mixed Electromagnetohydrodynamics-Pressure Driven Flow for Phan-Thien-Tanner Fluids in a Microchannel
,”
Int. J. Therm. Sci.
,
86
, pp.
246
257
.10.1016/j.ijthermalsci.2014.07.009
35.
Sarkar
,
S.
,
Ganguly
,
S.
, and
Dutta
,
P.
,
2017
, “
Electrokinetically Induced Thermofluidic Transport of Power-Law Fluids Under the Influence of Superimposed Magnetic Field
,”
Chem. Eng. Sci.
,
171
, pp.
391
403
.10.1016/j.ces.2017.05.053
36.
Sarkar
,
S.
, and
Ganguly
,
S.
,
2017
, “
Characterization of Electromagnetohydrodynamics Transport of Power-Law Fluids in Microchannel
,”
J. Non-Newtonian Fluid Mech.
,
250
, pp.
18
30
.10.1016/j.jnnfm.2017.10.006
37.
Xie
,
L.
,
Yang
,
L.-J.
,
Qin
,
L.-Z.
, and
Fu
,
Q.-F.
,
2017
, “
Temporal Instability of Charged Viscoelastic Liquid Jets Under an Axial Electric Field
,”
Eur. J. Mech. B/Fluids
,
66
, pp.
60
70
.10.1016/j.euromechflu.2017.03.007
38.
Xie
,
L.
, and
Yang
,
L.-J.
,
2017
, “
Axisymmetric and Non-Axisymmetric Instability of a Charged Viscoelastic Jet Under an Axial Magnetic Field
,”
J. Non-Newtonian Fluid Mech.
,
248
, pp.
92
98
.10.1016/j.jnnfm.2017.09.002
39.
Ruo
,
A.-C.
,
Chang
,
M.-H.
, and
Chen
,
F.
,
2010
, “
Electrohydrodynamic Instability of a Charged Liquid Jet in the Presence of an Axial Magnetic Field
,”
Phys. Fluids
,
22
(
4
), p.
044102
.10.1063/1.3419156
40.
Yih
,
C. S.
,
1995
, “
Kinetic-Energy Mass, Momentum Mass, and Drift Mass in Steady Irrotational Subsonic Flows
,”
J. Fluid Mech.
,
297
, pp.
29
36
.10.1017/S0022112095002989
41.
Chakraborty
,
S.
,
2005
, “
Dynamics of Capillary Flow of Blood Into a Microfluidic Channel
,”
Lab Chip
,
5
(
4
), pp.
421
430
.[15791340]10.1039/b414566f
42.
Hunter
,
R. J.
,
2001
,
Foundation of Colloid Science
,
Oxford University Press
,
New York
.
43.
Chakraborty
,
S.
,
2012
,
Microfluidics and Microscale Transport Processes
,
CRC Press
, New York.
44.
Akram
,
S.
,
Nadeem
,
S.
, and
Hussain
,
A.
,
2014
, “
Effects of Heat and Mass Transfer on Peristaltic Flow of a Bingham Fluid in the Presence of Inclined Magnetic Field and Channel With Different Wave Forms
,”
J. Magn. Magn. Mater.
,
362
, pp.
184
192
.10.1016/j.jmmm.2014.02.063
45.
Nadeem
,
S.
, and
Akram
,
S.
,
2012
, “
Peristaltic Flow of a Carreau Fluid in a Rectangular Duct
,”
ASME J. Fluids Eng.
,
134
(
4
), p. 041201.10.1115/1.4005727
You do not currently have access to this content.