Drag reduction in turbulent channel flows has significant practical relevance for energy savings. Various methods have been proposed to reduce turbulent skin friction, including microscale surface modifications such as riblets or superhydrophobic surfaces. More recently, macroscale surface modifications in the form of longitudinal grooves have been shown to reduce drag in laminar channel flows. The purpose of this study is to show that these grooves also reduce drag in turbulent channel flows and to quantify the drag reduction as a function of the groove parameters. Results are obtained using computational fluid dynamics (CFD) simulations with turbulence modeled by the k–ω shear-stress transport (SST) model, which is first validated with direct numerical simulations (DNS). Based on the CFD results, a reduced geometry model is proposed which shows that the approximate drag reduction can be quantified by evaluating the drag reduction of the geometry given by the first Fourier mode of an arbitrary groove geometry. Results are presented to show the drag reducing potential of grooves as a function of Reynolds number as well as groove wave number, amplitude, and shape. The mechanism of drag reduction is discussed, which is found to be due to a rearrangement of the bulk fluid motion into high-velocity streamtubes in the widest portion of the channel opening, resulting in a change in the wall shear stress profile.

References

1.
Kim
,
J.
,
2011
, “
Physics and Control of Wall Turbulence for Drag Reduction
,”
Philos. Trans. R. Soc., A
,
369
(
1940
), pp.
1396
1411
.
2.
Choi
,
H.
,
Moin
,
P.
, and
Kim
,
J.
,
1994
, “
Active Turbulence Control for Drag Reduction in Wall-Bounded Flows
,”
J. Fluid Mech.
,
262
, pp.
75
110
.
3.
Quadrio
,
M.
,
2011
, “
Drag Reduction in Turbulent Boundary Layers by In-Plane Wall Motion
,”
Philos. Trans. R. Soc., A
,
369
(
1940
), pp.
1428
1442
.
4.
Choi
,
K.
,
Jukes
,
T.
, and
Whalley
,
R.
,
2011
, “
Turbulent Boundary-Layer Control With Plasma Actuators
,”
Philos. Trans. R. Soc., A
,
369
(
1940
), pp.
1443
1458
.
5.
Walsh
,
M. J.
,
1979
, “
Riblets as a Viscous Drag Technique
,”
AIAA J.
,
17
(
7
), pp.
770
771
.
6.
Walsh
,
M. J.
,
1980
, “
Drag Characteristics of V-Groove and Transverse Curvature Riblets
,” Proceedings of the Symposium on Viscous Flow Drag Reduction, Dallas, TX, Nov. 7–8, pp. 168–184.
7.
Walsh
,
M. J.
,
1983
, “
Riblets as a Viscous Drag Technique
,”
AIAA J.
,
21
(
4
), pp.
485
486
.
8.
Mohammadi
,
A.
, and
Floryan
,
J. M.
,
2013
, “
Groove Optimization for Drag Reduction
,”
Phys. Fluids
,
25
(
11
), p.
113601
.
9.
Mohammadi
,
A.
, and
Floryan
,
J. M.
,
2013
, “
Pressure Losses in Grooved Channels
,”
J. Fluid Mech.
,
725
, pp.
23
54
.
10.
Mohammadi
,
A.
, and
Floryan
,
J. M.
,
2015
, “
Numerical Analysis of Laminar-Drag-Reducing Grooves
,”
ASME J. Fluids Eng.
,
137
(
4
), p.
041201
.
11.
Moody
,
L. F.
,
1944
, “
Friction Factors for Pipe Flow
,”
Trans. ASME
,
66
(
8
), pp.
671
684
.
12.
García-Mayoral
,
R.
, and
Jiménez
,
J.
,
2011
, “
Drag Reduction by Riblets
,”
Philos. Trans. R. Soc. A
,
369
(
1940
), pp.
1412
1427
.
13.
Szodruch
,
J.
,
1991
, “
Viscous Drag Reduction on Transport Aircraft
,”
AIAA
Paper No. 91-0685.
14.
Bechert
,
D. W.
,
Bruse
,
M.
,
Hage
,
W.
,
Hoeven
,
J. G. T. V. D.
, and
Hoppe
,
G.
,
1997
, “
Experiments on Drag-Reducing Surfaces and Their Optimization With an Adjustable Geometry
,”
J. Fluid Mech.
,
338
(
5
), pp.
59
87
.
15.
Itoh
,
M.
,
Tamano
,
S.
,
Iguchi
,
R.
,
Yokota
,
K.
,
Akino
,
N.
,
Hino
,
R.
, and
Kubo
,
S.
,
2006
, “
Turbulent Drag Reduction by the Seal Fur Surface
,”
Phys. Fluids
,
18
(
6
), p.
065102
.
16.
Rothstein
,
J. P.
,
2010
, “
Slip on Superhydrophobic Surfaces
,”
Annu. Rev. Fluid Mech.
,
42
(
1
), pp.
89
109
.
17.
Mohammadi
,
A.
, and
Floryan
,
J. M.
,
2012
, “
Mechanism of Drag Reduction by Surface Corrugation
,”
Phys. Fluids
,
24
(
1
), p.
013602
.
18.
Floryan
,
J. M.
,
1997
, “
Stability of Wall-Bounded Shear Layers in the Presence of Simulated Distributed Surface Roughness
,”
J. Fluid Mech.
,
335
, pp.
29
55
.
19.
Floryan
,
J. M.
,
2007
, “
Three-Dimensional Instabilities of Laminar Flow in a Rough Channel and the Concept of Hydraulically Smooth Wall
,”
Eur. J. Mech. (B/Fluids)
,
26
(
3
), pp.
305
329
.
20.
Mohammadi
,
A.
,
Moradi
,
H. V.
, and
Floryan
,
J. M.
,
2015
, “
New Instability Mode in a Grooved Channel
,”
J. Fluid Mech.
,
778
, pp.
691
720
.
21.
Wilcox
,
D. C.
,
1998
,
Turbulence Modelling for CFD
, 2nd ed.,
DCW Industries
, La Cañada, CA.
22.
ANSYS
, 2010, “
ANSYS FLUENT 13.0 Theory Guide
,” ANSYS, Inc., Canonsburg, PA.
23.
Menter
,
F. R.
,
1994
, “
Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications
,”
AIAA J.
,
32
(
8
), pp.
1598
1605
.
24.
Menter
,
F. R.
,
2011
, “
Turbulence Modeling for Engineering Flows
,” White paper, ANSYS Inc., Canonsburg, PA.
25.
Celik
,
I. B.
,
Ghia
,
U.
,
Roache
,
P. J.
,
Frietas
,
C. J.
,
Coleman
,
H.
, and
Raad
,
P. E.
,
2008
, “
Procedure for Estimation and Reporting of Uncertainty Due to Discretization in CFD Applications
,”
ASME J. Fluids Eng.
,
130
(7), p.
078001
.
26.
Chen
,
Y.
,
Floryan
,
J. M.
,
Chew
,
Y. T.
, and
Khoo
,
B. C.
,
2016
, “
Groove-Induced Changes in Discharge in Channel Flow
,”
J. Fluid Mech.
,
799
, pp.
297
333
.
27.
Kim
,
J.
,
Moin
,
P.
, and
Moser
,
R.
,
1987
, “
Turbulence Statistics in Fully Developed Channel Flow at Low Reynolds Number
,”
J. Fluid Mech.
,
177
, pp.
133
166
.
28.
Orszag
,
S. A.
,
1970
, “
Analytical Theories of Turbulence
,”
J. Fluid Mech.
,
41
(
02
), pp.
363
386
.
29.
Gibbs
,
J. W.
,
1898
, “
Fourier's Series
,”
Nature
,
59
(
1522
), p.
200
.
30.
Gibbs
,
J. W.
,
1899
, “
Fourier's Series
,”
Nature
,
59
(1539), p.
606
.
31.
Hunter
,
J. D.
,
2007
, “
Matplotlib: A 2D Graphics Environment
,”
Comput. Sci. Eng.
,
9
(
3
), pp.
90
95
.
You do not currently have access to this content.