This study focuses on interactions of vortices generated by a family of eddy-promoting upstream rectangular cylinders (of different heights a* and widths b*) with the shear layers of a downstream square cylinder (of height A*) placed near a plane in an in-line tandem arrangement under the incidence of Couette–Poiseuille flow based nonuniform linear/nonlinear velocity profile. The dimensionless operational parameters are cylinders spacing distance S, ratio of heights r2=a*/A* (≤1), aspect ratio r1=b*/a* (≤1), Reynolds number Re (based on the velocity at height A* for Couette flow), ReU2 (based on the velocity at height 10A* for Couette–Poiseuille flow), and nondimensional pressure gradient P at the inlet. The governing equations are solved numerically through a pressure-correction-based iterative algorithm (SIMPLE) with the quadratic upwind interpolation for convective kinematics (QUICK) scheme for convective terms. The major issue of appearing multiple peaks in the spectrum of the fluctuating lift coefficient of the downstream cylinder is addressed and justified exhibiting the flow patterns. While considering the rectangular shape (for the upstream cylinder) and nonlinear velocity (at the inlet), the possibility of generating the unsteadiness in the steady wake flow of the downstream cylinder at a Re (based on height a*) less than the critical Re for the downstream cylinder is documented here. The dependence of flow characteristics of the downstream cylinder on the angle of incident linear velocity at specific S and r1 is also demonstrated here. It is observed that the discontinuous jump in the aerodynamic characteristics (due to a sudden change from one distinct flow pattern to the other in the critical spacing distance regime) is directly proportional to the height of the vortex generator. Increasing P under the same characteristic velocity causes the steady flow of cylinder(s) to convert to a periodic flow and reduces the critical spacing distance for the vortex generator.

References

1.
Yang
,
R. J.
, and
Fu
,
L. M.
,
2001
, “
Thermal and Flow Analysis of a Heated Electronic Component
,”
Int. J. Heat Mass Transfer
,
44
(
12
), pp.
2261
2275
.10.1016/S0017-9310(00)00265-9
2.
Sharma
,
S.
, and
Eswaran
,
V.
,
2004
, “
Heat and Fluid Flow Across a Square Cylinder in the Two-Dimensional Laminar Flow Regime
,”
Numer. Heat Transfer, Part A
,
45
(
3
), pp.
247
269
.10.1080/10407780490278562
3.
Zhu
,
C.
,
Liang
,
H.
,
Sun
,
D.
,
Wang
,
L.
, and
Zhang
,
Y.
,
2006
, “
Numerical Study of Interactions of Vortices Generated by Vortex Generators and Their Effects on Heat Transfer Enhancement
,”
Numer. Heat Transfer, Part A
,
50
(4), pp.
353
368
.10.1080/10407780600671635
4.
Davis
,
R. W.
, and
Moore
,
E. F.
,
1982
, “
A Numerical Study of Vortex Shedding From Rectangles
,”
J. Fluid Mech.
,
116
(1), pp.
475
506
.10.1017/S0022112082000561
5.
Okajima
,
A.
,
1982
, “
Strouhal Numbers of Rectangular Cylinders
,”
J. Fluid Mech.
,
123
(
1
), pp.
379
398
.10.1017/S0022112082003115
6.
Ayukawa
,
K.
,
Ochi
,
J.
,
Kawahara
,
G.
, and
Hirao
,
T.
,
1993
, “
Effects of Shear Rate on the Flow Around a Square Cylinder in a Uniform Shear Flow
,”
J. Wind Eng. Ind. Aerodyn.
,
50
, pp.
97
106
.10.1016/0167-6105(93)90065-V
7.
Yoon
,
D.
,
Yang
,
K.
, and
Choi
,
C.
,
2010
, “
Flow Past a Square Cylinder With an Angle of Incidence
,”
Phys. Fluids
,
22
(4), p.
043607
.10.1063/1.3388857
8.
Sen
,
S.
,
Mittal
,
S.
, and
Biswas
,
G.
,
2010
, “
Flow Past a Square Cylinder at Low Reynolds Numbers
,”
Int. J. Numer. Methods Fluids
,
67
(
9
), pp.
1160
1174
.10.1002/fld.2416
9.
Cao
,
S.
,
Zhou
,
Q.
, and
Zhou
,
Z.
,
2014
, “
Velocity Shear Flow Over Rectangular Cylinders With Different Side Ratios
,”
Comput. Fluids
,
96
, pp.
35
46
.10.1016/j.compfluid.2014.03.002
10.
Huang
,
Z.
,
Narasimhamurthy
,
V. D.
, and
Anderson
,
H. I.
,
2010
, “
Oblique and Cellular Vortex Shedding Behind a Circular Cylinder in a Bidirectional Shear Flow
,”
Phys. Fluids
,
22
, p.
114105
.10.1063/1.3483488
11.
Maiti
,
D. K.
,
2011
, “
Dependence of Flow Characteristics of Rectangular Cylinders Near a Wall on the Incident Velocity
,”
Acta Mech.
,
222
(
3–4
), pp.
273
286
.10.1007/s00707-011-0527-6
12.
Maiti
,
D. K.
,
2012
, “
Numerical Study on Aerodynamic Characteristics of Rectangular Cylinders Near a Wall
,”
Ocean Eng.
,
54
, pp.
251
260
.10.1016/j.oceaneng.2012.07.012
13.
Balachandar
,
S.
, and
Parker
,
S. J.
,
2002
, “
Onset of Vortex Shedding in an Inline and Staggered Array of Rectangular Cylinders
,”
Phys. Fluids
,
14
(10), pp.
3714
3732
.10.1063/1.1508101
14.
Zhao
,
M.
,
Cheng
,
L.
,
Teng
,
B.
, and
Liang
,
D.
,
2005
, “
Numerical Simulation of Viscous Flow Past Two Circular Cylinders of Different Diameters
,”
App. Ocean Res.
,
27
(
1
), pp.
39
55
.10.1016/j.apor.2004.10.002
15.
Cheng
,
M.
,
Whyte
,
D. S.
, and
Lou
,
J.
,
2007
, “
Numerical Simulation of Flow Around a Square Cylinder in Uniform-Shear Flow
,”
J. Fluids Struct.
,
23
(
2
), pp.
207
226
.10.1016/j.jfluidstructs.2006.08.011
16.
Harichandan
,
A. B.
, and
Roy
,
A.
,
2012
, “
Numerical Investigation of Flow Past Single and Tandem Cylindrical Bodies in the Vicinity of a Plane Wall
,”
J. Fluids Struct.
,
33
, pp.
19
43
.10.1016/j.jfluidstructs.2012.04.006
17.
Tatsutani
,
R.
,
Devarakonda
,
R.
, and
Humphrey
,
J. A. C.
,
1993
, “
Unsteady Flow and Heat Transfer for Cylinder Pairs in a Channel
,”
Int. J. Heat Mass Transfer
,
36
(
13
), pp.
3311
3328
.10.1016/0017-9310(93)90013-V
18.
Wang
,
Q.
, and
Jaluria
,
Y.
,
2002
, “
Unsteady Mixed Convection in a Horizontal Channel With Protruding Heated Blocks and a Rectangular Vortex Promoter
,”
Phys. Fluids
,
14
(
7
), pp.
2113
2127
.10.1063/1.1480832
19.
Ehsan
,
I.
,
Mohammad
,
S.
,
Reza
,
N. M.
,
Ali
,
J.
, and
Tashnizi
,
E. S.
,
2013
, “
Power-Law Fluid Flow Passing Two Square Cylinders in Tandem Arrangement
,”
ASME J. Fluids Eng.
,
135
(
6
), p.
061101
.10.1115/1.4023853
20.
Lankadasu
,
A.
, and
Vengadesan
,
S.
,
2007
, “
Interference Effect of Two Equal-Sized Square Cylinders in Tandem Arrangement: With Planar Shear Flow
,”
Int. J. Numer. Methods Fluids
,
57
(
8
), pp.
1005
1021
.10.1002/fld.1670
21.
Ali
,
M. S. M.
,
Doolan
,
C. J.
, and
Wheatley
,
V.
,
2012
, “
Low Reynolds Number Flow Over a Square Cylinder With a Detached Flat Plate
,”
Int. J. Heat Fluid Flow
,
36
, pp.
133
141
.10.1016/j.ijheatfluidflow.2012.03.011
22.
Vakil
,
A.
, and
Green
,
S.
,
2013
, “
Numerical Study of Two-Dimensional Circular Cylinders in Tandem at Moderate Reynolds Numbers
,”
ASME J. Fluids Eng.
,
135
(
7
), p.
071204
.10.1115/1.4024045
23.
Malekzadeh
,
S.
, and
Sohankar
,
A.
,
2012
, “
Reduction of Fluid Forces and Heat Transfer on a Square Cylinder in a Laminar Flow Regime Using a Control Plate
,”
Int. J. Heat Fluid Flow
,
34
, pp.
15
27
.10.1016/j.ijheatfluidflow.2011.12.008
24.
Hayder
,
M. M. A.
,
2012
, “
Wake Formation From a Pair of Circular Cylinders Traversing Between Small- and Large-Incidence Flow Regimes
,”
ASME J. Fluids Eng.
,
134
(
1
), p.
011204
.10.1115/1.4005726
25.
Wilkins
,
S. J.
,
Hogan
,
J. D.
, and
Hall
,
J. W.
,
2013
, “
Vortex Shedding in a Tandem Circular Cylinder System With a Yawed Downstream Cylinder
,”
ASME J. Fluids Eng.
,
135
, pp.
12
1224
.10.1115/1.4023949
26.
Lu
,
L.
,
Liu
,
M.
,
Teng
,
B.
,
Cui
,
Z.
,
Tang
,
G.
,
Zhao
,
M.
, and
Cheng
,
L.
,
2014
, “
Numerical Investigation of Fluid Flow Past Circular Cylinder With Multiple Control Rods at Low Reynolds Number
,”
J. Fluids Struct.
,
48
, pp.
235
259
.10.1016/j.jfluidstructs.2014.03.006
27.
Bhattacharyya
,
S.
, and
Dhinakaran
,
S.
,
2008
, “
Vortex Shedding in Shear Flow Past Tandem Square Cylinders in the Vicinity of a Plane Wall
,”
J. Fluids Struct.
,
24
, pp.
400
417
.10.1016/j.jfluidstructs.2007.09.002
28.
Chatterjee
,
D.
, and
Mondal
,
B.
,
2012
, “
Forced Convection Heat Transfer from Tandem Square Cylinders for Various Spacing Ratios
,”
Numer. Heat Transfer, Part A
,
61
(
5
), pp.
381
400
.10.1080/10407782.2012.647985
29.
Maiti
,
D. K.
, and
Bhatt
,
R.
,
2014
, “
Numerical Study on Flow and Aerodynamic Characteristics: Square Cylinder and Eddy-Promoting Rectangular Cylinder in Tandem Near Wall
,”
Aerosp. Sci. Technol.
,
36
, pp.
5
20
.10.1016/j.ast.2014.03.012
30.
Alam
,
M. M.
,
Moriya
,
M.
,
Takai
,
K.
, and
Sakamoto
,
H.
,
2002
, “
Suppression of Fluid Forces Acting on Two Square Prisms in a Tandem Arrangement by Passive Control of Flow
,”
J. Fluids Struct.
,
16
(
8
), pp.
1073
1092
.10.1006/jfls.2002.0458
31.
Zhou
,
L.
,
Cheng
,
M.
, and
Hung
,
K. C.
,
2005
, “
Suppression of Fluid Force on a Square Cylinder by Flow Control
,”
J. Fluids Struct.
,
21
(
2
), pp.
151
167
.10.1016/j.jfluidstructs.2005.07.002
32.
Bhattacharyya
,
S.
, and
Maiti
,
D. K.
,
2004
, “
Shear Flow Past a Square Cylinder Near a Wall
,”
Int. J. Eng. Sci.
,
42
(
19
), pp.
2119
2134
.10.1016/j.ijengsci.2004.04.007
33.
Schlichting
,
H.
, and
Gersten
,
K.
,
2000
,
Boundary-Layer Theory
,
Springer
,
New York
.10.1007/978-3-642-85829-1
34.
Patankar
,
S. V.
,
1980
,
Numerical Heat Transfer and Fluid Flow. Hemisphere Publishing Corporation
,
Taylor & Francis Group
,
New York
.
35.
Leonard
,
B. P.
,
1995
, “
A Stable and Accurate Convective Modeling Procedure Based on Quadratic Upstream Interpolation
,”
Comput. Methods Appl. Mech. Eng.
,
19
, pp.
59
98
.10.1016/0045-7825(79)90034-3
36.
Hayase
,
T.
,
Humphrey
,
J. A. C.
, and
Greif
,
R.
,
1990
, “
A Consistently Formulated QUICK Scheme for Fast and Stable Convergence Using Finite-Volume Iterative Calculation Procedures
,”
J. Comput. Phys.
,
98
, pp.
108
118
.10.1016/0021-9991(92)90177-Z
37.
Manson
,
J. R.
,
Pender
,
G.
, and
Wallis
,
S. G.
,
1996
, “
Limitations of Traditional Finite Volume Discretizations for Unsteady Computational Fluid Dynamics
,”
AIAA J.
,
34
(
5
), pp.
1074
1076
.10.2514/3.13191
38.
Bhattacharyya
,
S.
,
Maiti
,
D. K.
, and
Dhinakaran
,
S.
,
2006
, “
Influence of Buoyancy on Vortex Shedding and Heat Transfer From a Square Cylinder in Wall Proximity
,”
Numer. Heat Transfer, Part A
,
50
(6), pp.
585
606
.10.1080/10407780600867761
39.
Karniadakis
,
G. E.
,
1995
, “
Towards a Numerical Error Bar in CFD
,”
ASME J. Fluids Eng.
,
117
(1), pp.
7
9
.10.1115/1.2816828
40.
Sohankar
,
A.
,
Norberg
,
C.
, and
Davidson
,
L.
,
1998
, “
Low-Reynolds-Number Flow Around a Square Cylinder at Incidence: Study of Blockage, Onset of Vortex Shedding and Outlet Boundary Condition
,”
Int. J. Numer. Methods Fluids
,
26
(
1
), pp.
39
56
.10.1002/(SICI)1097-0363(19980115)26:1<39::AID-FLD623>3.0.CO;2-P
41.
Nikfarjam
,
F.
, and
Sohankar
,
A.
,
2013
, “
Power-Law Fluids Flow and Heat Transfer Over Two Tandem Square Cylinders: Effects of Reynolds Number and Power-Law Index
,”
Acta Mech.
,
224
(
5
), pp.
1115
1132
.10.1007/s00707-012-0806-x
42.
Franke
,
R.
,
Rodi
,
W.
, and
Schonung
,
B.
,
1990
, “
Numerical Calculation of Laminar Vortex Shedding Flow Past Cylinders
,”
J. Wind Eng. Ind. Aerodyn.
,
35
(
1–3
), pp.
237
257
.10.1016/0167-6105(90)90219-3
43.
Sohankar
,
A.
,
Norberg
,
C.
, and
Davidson
,
L.
,
1997
, “
Numerical Simulation of Unsteady Low-Reynolds Number Flow Around Rectangular Cylinders at Incidence
,”
J. Wind Eng. Ind. Aerodyn.
,
69
, pp.
189
201
.10.1016/S0167-6105(97)00154-2
44.
Bhattacharyya
,
S.
, and
Maiti
,
D. K.
,
2005
, “
Vortex Shedding From a Square Cylinder in Presence of a Moving Ground
,”
Int. J. Numer. Methods Fluids
,
48
(9), pp.
985
1000
.10.1002/fld.970
45.
Bhattacharyya
,
S.
, and
Maiti
,
D. K.
,
2006
, “
Vortex Shedding Suppression for Shear Flow Past a Square Cylinder Near a Plane Wall
,”
Acta Mech.
,
184
(1–4), pp.
15
31
.10.1007/s00707-005-0304-5
46.
Maiti
,
D. K.
, and
Bhatt
,
R.
,
2014
, “
Vortex Shedding Suppression and Aerodynamic Characteristics of Square Cylinder Due to Offsetting Rectangular Cylinders Towards a Plane
,”
Ocean Eng.
,
82
, pp.
91
104
.10.1016/j.oceaneng.2014.02.033
47.
Rosales
,
J. L.
,
Ortega
,
A.
, and
Humphrey
,
J. A. C.
,
2000
, “
A Numerical Investigation of Convective Heat Transfer in Unsteady Laminar Flow Past a Single and Tandem Pair of Square Cylinders in a Channel
,”
Numer. Heat Trans., Part A
,
38
, pp.
443
465
.10.1080/104077800750020388
48.
Bao
,
Y.
,
Wu
,
Q.
, and
Zhou
,
D.
,
2012
, “
Numerical Investigation of Flow Around an Inline Square Cylinder Array With Different Spacing Ratios
,”
Comput. Fluids
,
55
, pp.
118
131
.10.1016/j.compfluid.2011.11.011
49.
Baxendale
,
A. J.
, and
Grant
,
I.
,
1986
, “
Vortex Shedding From Two Cylinders of Different Diameters
,”
J. Wind Eng. Ind. Aerodyn.
,
23
, pp.
427
435
.10.1016/0167-6105(86)90060-7
50.
Sayers
,
A. T.
, and
Saban
,
A.
,
1994
, “
Flow Over Two Cylinders of Different Diameters: The Lock-In Effect
,”
J. Wind Eng. Ind. Aerodyn.
,
51
(1), pp.
43
54
.10.1016/0167-6105(94)90076-0
51.
Liu
,
C. H.
, and
Chen
,
J. M.
,
2002
, “
Observations of Hysteresis in Flow Around Two Square Cylinders in a Tandem Arrangement
,”
J. Wind Eng. Ind. Aerodyn.
,
90
(
9
), pp.
1019
1050
.10.1016/S0167-6105(02)00234-9
52.
Sharman
,
B.
,
Lien
,
F. S.
,
Davidson
,
L.
, and
Norberg
,
N.
,
2005
, “
Numerical Predictions of Low Reynolds Number Flows Over Two Tandem Circular Cylinders
,”
Int. J. Numer. Methods Fluids
,
47
(
5
), pp.
423
447
.10.1002/fld.812
53.
Martinuzzi
,
R. J.
,
Bailey
,
S. C. C.
, and
Kopp
,
G. A.
,
2003
, “
Influence of Wall Proximity on Vortex Shedding From a Square Cylinder
,”
Exp. Fluids
,
34
(
5
), pp.
585
596
.10.1007/s00348-003-0594-0
54.
Rosko
,
A.
,
1954
, “
On the Drag and Shedding Frequency of Two Dimensional Bluff Bodies
,” NACA Technical Note No. 3169.
You do not currently have access to this content.