A Womersley model-based assessment of pulsatile rigid-tube flow is presented. Multigate Doppler ultrasound was used to measure axial velocities at many radial locations along a single interrogation beam going through the center of a stiff tube. However, a large impediment to Doppler ultrasound diagnostics and resolution close to the wall is considerable noise due to the presence of the wall-fluid interface as well as many other effects, such as spectral broadening, coherent scattering, time resolution, and Doppler angle uncertainty. Thus, our confidence in measured signals is questionable, especially in the wall vicinity where the important oscillatory shear stresses occur. In order to alleviate known biases and shortcomings of the pulsed Doppler ultrasound measurements we have applied Womersley's laminar axisymmetric rigid-tube approximation to reconstruct velocity profiles over the entire flow domain and specifically close to wall, enabling unambiguous determination of the shear stresses. We employ harmonic analysis of the measured velocity profiles at all or selected trusted tube radial locations over one or more periods. Each of estimated Fourier coefficients has a unique counterpart in the respective pressure gradient component. From ensemble-averaged cross-sectional pressure gradient components we compute velocity profiles, volume flow rate, wall shear stress, and other flow parameters. Estimation of the pressure gradients from spatially resolved pulsed Doppler ultrasound velocity measurements is an added benefit of our reconstruction method. Multigate pulsed Doppler ultrasound scanners offer powerful capabilities to noninvasively and nonintrusively measure velocity profiles for hemodynamic and other fluid flow applications. This flow reconstruction method can also be tailored for use with other flow diagnostic modalities, such as magnetic resonance imaging (MRI) and a wide class of optical methods.

References

1.
Hoeks
,
A. P. G.
,
Reneman
,
R. S.
, and
Peronneau
,
P. A.
,
1981
, “
A Multi-Gate Pulsed Doppler System With Serial Data Processing
,”
IEEE Trans. Sonics Ultrason.
,
28
, pp.
242
247
.10.1109/T-SU.1981.31254
2.
Tortoli
,
P.
,
Guidi
,
F.
,
Guidi
,
G.
, and
Atzeni
,
C.
,
1996
, “
Spectral Velocity Profiles for Detailed Ultrasound Flow Analysis
,”
IEEE Trans. Ultrason., Ferroelect., Freq. Contr.
,
43
(
4
), pp.
654
659
.10.1109/58.503727
3.
Evans
,
D. H.
, and
McDicken
,
W. N.
,
2000
,
Doppler Ultrasound—Physics, Instrumentation and Signal Processing
,
John Wiley & Sons Inc.
,
Chichester
, UK.
4.
Cobbold
,
R. S. C.
,
2007
,
Foundations of Biomedical Ultrasound
,
Oxford University Press
,
New York
.
5.
Bambi
,
G.
,
Morganti
,
T.
,
Ricci
,
S.
,
Boni
,
E.
,
Guidi
,
F.
,
Palombo
,
C.
, and
Tortoli
P.
,
2004
, “
A Novel Ultrasound Instrument for Investigation of Arterial Mechanics
,”
Ultrasonics
,
42
, pp.
731
737
.10.1016/j.ultras.2003.11.008
6.
Womersley
,
J. R.
,
1955
, “
Method for the Calculation of Velocity, Rate of Flow, and Viscous Drag in Arteries When the Pressure Gradient is Known
,”
J. Physiol.
,
127
, pp.
553
563
.
7.
Womersley
,
J. R.
,
1955
, “
Oscillatory Motion of a Viscous Liquid in a Thin-Walled Elastic Tube: I The Linear Approximation for Long Waves
,”
Phil. Mag.
,
46
, pp.
199
221
.
8.
Womersley
,
J. R.
,
1957
, “
Oscillatory Flow in Arteries: The Constrained Elastic Tube as a Model of Arterial Flow and Pulse Transmission
,”
Phys. Med. Biol.
,
2
, pp.
178
187
.10.1088/0031-9155/2/2/305
9.
Nichols
,
W. N.
, and
O'Rourke
,
M. F.
,
1990
,
McDonald's Blood Flow in Arteries
,
Arnold
,
London
.
10.
Warriner
,
R. K.
,
Johnston
,
K. W.
, and
Cobbold
,
R. S. C.
,
2008
, “
A Viscoelastic Model of Arterial Wall Motion in Pulsatile Flow: Implications for Doppler Ultrasound Clutter Assessment
,”
Physiol. Meas.
,
29
, pp.
157
179
.10.1088/0967-3334/29/2/001
11.
Balocco
,
S.
,
Basset
,
O.
,
Courbebaisse
,
G.
,
Boni
,
E.
,
Frangi
,
A. F.
,
Tortoli
,
P.
, and
Cachard
,
C.
,
2010
. “
Estimation of the Viscoelastic Properties of Vessel Walls Using a Computational Model and Doppler
,”
Phys. Med. Biol.
,
55
, pp.
3557
3575
.10.1088/0031-9155/55/12/019
12.
Ku
,
D. N.
,
1997
, “
Blood Flow in Arteries
,”
Ann. Rev. Fluid Mech.
,
29
, pp.
399
434
.10.1146/annurev.fluid.29.1.399
13.
Struijk
,
P. C.
,
Stewart
,
P. A.
,
Fernando
,
K. L.
,
Mathews
,
V. J.
,
Loupas
,
T.
,
Steegers
,
E. A. P.
, and
Wladimiroff
,
J. W.
,
2005
, “
Wall Shear Stress and Related Hemodynamic Parameters in the Fetal Descending Aorta Derived From Color Doppler Velocity Profiles
,”
Ultrasound Med. Biol.
,
31
, pp.
1441
1450
.10.1016/j.ultrasmedbio.2005.07.006
14.
Leguy
,
C. A. D.
,
Bosboom
,
E. M. H.
,
Hoeks
,
A. P. G.
, and
van de Vosse
,
F. N.
,
2009
, “
Assessment of Blood Volume Flow in Slightly Curved Arteries From Velocity Profile
,”
J. Biomech.
,
42
, pp.
1664
1672
.10.1016/j.jbiomech.2009.04.032
15.
Leguy
,
C. A. D.
,
Bosboom
,
E. M. H.
,
Hoeks
,
A. P. G.
, and
van de Vosse
,
F. N.
,
2009
, “
Model Based Assessment of Dynamic Blood Volume Flow From Ultrasound Measurements
,”
Med. Biol. Eng. Comput.
,
47
, pp.
641
648
.10.1007/s11517-009-0473-9
16.
Ponzini
,
R.
,
Vergara.
C.
,
Redaelli
,
A.
, and
Veneziani
,
A.
,
2006
, “
Reliable CFD Estimation of Flow Rate in Haemodynamics Measures
,”
Ultrasound Med. Biol.
,
32
(
10
), pp.
1545
1555
.10.1016/j.ultrasmedbio.2006.05.022
17.
Vergara
,
C.
,
Ponzini
,
R.
,
Veneziani
,
A.
,
Redaelli
,
A.
,
Neglia
,
D.
, and
Parodi
,
O.
,
2010
, “
Womersley Number-Based Estimation of Flow Rate With Doppler Ultrasound: Sensitivity Analysis and First Clinical Applications
,”
Comput. Meth. Prog. Biomed.
,
98
, pp.
151
160
.10.1016/j.cmpb.2009.09.013
18.
Voltairas
,
P. A.
,
Fotiadis
,
D. I.
,
Massalas
,
C. V.
, and
Michalis
,
L. K.
,
2005
, “
Anharmonic Analysis of Arterial Blood Pressure and Flow Pulses
,”
J. Biomech.
,
38
, pp.
1423
1431
.10.1016/j.jbiomech.2004.06.023
19.
Cinthio
,
M.
,
Ahlgren
,
Å. R.
,
Bergkvist
,
J.
,
Jansson
,
T.
,
Persson
,
H. W.
, and
Lindström
,
K.
,
2006
, “
Longitudinal Movements and Resulting Shear Strain of the Arterial Wall
,”
Am. J. Physiol. Heart Circ. Physiol.
,
291
, pp.
394
402
.10.1152/ajpheart.00988.2005
20.
Daidzic
,
N. E.
, and
Hossain
,
M. S.
,
2010
, “
The Model of Micro-Fluidic Pump With Vibrating Boundaries
,” Proc. 14th AMME Conference,
Cairo, Egypt
, May 25–27, AM-054 (MP-9).
21.
Hossain
,
M. S.
, and
Daidzic
,
N. E.
,
2012
, “
The Shear-Driven Fluid Motion Using Oscillating Boundaries
,”
ASME J. Fluids Eng.
,
134
(
5
), pp.
111
122
.
22.
Vennemann
,
P.
,
Lindken
,
R.
, and
Westerweel
,
J.
,
2007
, “
In vivo Whole-Field Blood Velocity Measurement Techniques
,”
Exp. Fluids
,
42
, pp.
495
511
.10.1007/s00348-007-0276-4
23.
Daidzic
,
N. E.
,
Schmidt
,
E.
,
Hasan
,
M. M.
, and
Altobelli
,
S.
,
2005
, “
Gas-Liquid Phase Distribution and Void Fraction Measurements Using MRI
,”
Nucl. Eng. Des.
,
235
, pp.
1163
1178
.10.1016/j.nucengdes.2005.02.024
24.
Lemmin
,
U.
, and
Rolland
,
T.
,
1997
, “
Acoustic Velocity Profiler for Laboratory and Field Studies
,”
J. Hydraul. Eng.
,
123
(
12
), pp.
1089
1097
.10.1061/(ASCE)0733-9429(1997)123:12(1089)
25.
Takeda
,
Y.
,
1999
, “
Ultrasonic Doppler Method or Velocity Profile Measurement in Fluid Dynamics and Fluid Engineering
,”
Exp. Fluids
,
26
, pp.
177
178
.10.1007/s003480050277
26.
Takeda
,
Y.
(ed.),
2012
,
Ultrasonic Doppler Velocity Profiler for Fluid Flow
,
Springer
,
Berlin
.
27.
Longo
,
S.
,
2006
, “
The Effects of Air Bubbles on Ultrasound Velocity Measurements
,”
Exp. Fluids
,
41
, pp.
593
602
.10.1007/s00348-006-0183-0
28.
Morgan
,
G. W.
, and
Kiely
,
J. P.
,
1954
, “
Wave Propagation in a Viscous Liquid Contained in a Flexible Tube
,”
J. Acoust. Soc. Amer.
,
26
(
3
), pp.
323
328
.10.1121/1.1907335
29.
White
,
F. M.
,
1991
,
Viscous Fluid Flow
,
McGraw-Hill
,
New York
.
30.
Dwight
,
H. B.
,
1961
,
Tables of Integrals and other Mathematical Data
,
Macmillan
,
New York
.
31.
Abramowitz
,
M.
, and
Stegun
,
I. A.
,
1972
,
Handbook of Mathematical Functions
,
Dover
,
New York.
32.
Schlichting
,
H.
, and
Gersten
,
K.
,
2001
,
Boundary-Layer Theory
,
Springer
,
Berlin
.
33.
Ramnarine
,
K. V.
,
Nassiri
,
D. K.
,
Hoskins
,
P. R.
, and
Lubbers
,
J.
,
1998
, “
Validation of a New Blood-Mimicking Fluid for Use in Doppler Flow Test Objects
,”
Ultrasound Med. Biol.
,
24
(
3
), pp.
451
459
.10.1016/S0301-5629(97)00277-9
34.
Press
,
W. H.
,
Vetterling
,
W. T.
,
Teukolsky
,
S. A.
, and
Flannery
,
B. P.
,
1992
,
Numerical Recipes in FORTRAN: The Art of Scientific Computing
,
Cambridge University Press
,
Cambridge, UK
.
35.
Iserles
,
A.
, and
Nørsett
,
S. P.
,
2004
, “
On Quadrature Methods for Highly Oscillatory Integrals and Their Implementation
,”
BIT Num. Math.
,
44
, pp.
755
772
.10.1007/s10543-004-5243-3
36.
McDonald
,
D. A.
,
1955
, “
The Relation of Pulsatile Pressure to Flow in Arteries
,”
J. Physiol.
,
127
, pp.
533
552
.
37.
Hale
,
J. F.
,
McDonald
,
D. A.
, and
Womersley
,
J. R.
,
1955
, “
Velocity Profiles of Oscillating Arterial Flow, With Some Calculations of Viscous Drag and the Reynolds Number
,”
J. Physiol.
,
128
, pp.
629
640
.
You do not currently have access to this content.