A novel method of designing hub and shroud contours is presented. The method, based on the medial axis transform theory in differential geometry, gives a uniform description of hub and shroud contours and the formula of cross section area. Through solving the formula of cross section area with an additional constraint, the hub and shroud contours can be determined numerically. The constraint is exposed through a curvature equation, which allows the medial axis or hub (shroud) contour to be a certain form. Using this method, various optimization criteria relating to the cross section area can be conveniently introduced into the design.
Issue Section:
Technical Briefs
1.
Cedar
, R. D.
, and Stow
, P.
, 1985, “A Compatible Mixed Design and Analysis Finite Element Method for the Design of Turbomachinery Blades
,” Int. J. Numer. Methods Fluids
0271-2091, 5
(4
), pp. 331
–345
.2.
Jansen
, W.
, and Kirschner
, A. M.
, 1974, “Impeller Blade Design Method for Centrifugal Compressors
,” Fluid Mechanics, Acoustics, and Design of Turbomachinery
, NASA, SP-304, pp. 537
–563
.3.
Tan
, C. S.
, Hawthorne
, W. R.
, and McCune
, J. E.
, 1984, “Theory of Blade Design for Large Deflections: Part II—Annular Cascades
,” ASME J. Eng. Gas Turbines Power
0742-4795, 106
(2
), pp. 354
–365
.4.
Borges
, J. E.
, 1990, “A Three-Dimensional Inverse Method for Turbomachinery: Part I—Theory
,” ASME J. Turbomach.
0889-504X, 112
(3
), pp. 346
–354
.5.
Zangeneh
, M.
, 1994, “Inviscid-Viscous Interaction Method for Three-Dimensional Inverse Design of Centrifugal Impellers
,” ASME J. Turbomach.
0889-504X, 116
(2
), pp. 280
–290
.6.
Zannetti
, L.
, Marsilio
, R.
, and Larocca
, F.
, 1988, “Euler Solver for 3D Inverse Problems
,” Advances and Applications in Computational Fluid Dynamics, ASME Winter Annual Meeting
, Chicago, pp. 71
–79
.7.
Casey
, M.
, Gersbach
, F.
, and Robinson
, C.
, 2008, “An Optimization Technique for Radial Compressor Impellers
,” ASME Turbo Expo 2008: Power for Land, Sea, and Air
, Berlin, Vol. 6
, pp. 2401
–2411
.8.
Lu
, J.
, Xi
, G.
, and Qi
, D.
, 2007, “Optimization Method on Impeller Meridional Contour and 3D Blade
,” Chin. J. Mech. Eng.
0577-6686, 20
(06
), pp. 43
–49
.9.
Miyauchi
, S.
, Horiguchi
, H.
, Fukutomi
, J.
, and Takahashi
, A.
, 2004, “Optimization of Meridional Flow Channel Design of Pump Impeller
,” Int. J. Rotating Mach.
1023-621X, 10
(2
), pp. 115
–119
.10.
Demeulenaere
, A.
, and Braembussche
, R. V.
, 1998, “Three-Dimensional Inverse Method for Turbomachinery Blading Design
,” ASME J. Turbomach.
0889-504X, 120
, pp. 247
–255
.11.
Paßrucker
, H.
, and Van den Braembussche
, R. A.
, 2000, “Inverse Design of Centrifugal Impellers by Simultaneous Modification of Blade Shape and Meridional Contour
,” ASME Turbo Expo 2000
, Munich.12.
Cai
, Z.
, Wu
, K.
, and Ou
, Y.
, 1992, “Calculation of the Meridian Surface for a Fan Impeller
,” Journal of Huazhong University of Science and Technology
, 20
(1
), pp. 77
–82
.13.
Blum
, H.
, 1967, “A Transformation for Extracting New Descriptors of Shape
,” Models for the Perception of Speech and Visual Form
, MIT Press
, Cambridge, MA
, pp. 362
–380
.14.
Choi
, H. I.
, Choi
, S. W.
, and Moon
, H. P.
, 1997, “Mathematical Theory of Medial Axis Transform
,” Pac. J. Math.
0030-8730, 181
(1
), pp. 57
–88
.15.
Casey
, M. V.
, 1983, “A Computational Geometry for the Blades and Internal Flow Channels of Centrifugal Compressors
,” ASME J. Eng. Power
0022-0825, 105
, pp. 288
–295
.Copyright © 2011
by American Society of Mechanical Engineers
You do not currently have access to this content.