A novel method of designing hub and shroud contours is presented. The method, based on the medial axis transform theory in differential geometry, gives a uniform description of hub and shroud contours and the formula of cross section area. Through solving the formula of cross section area with an additional constraint, the hub and shroud contours can be determined numerically. The constraint is exposed through a curvature equation, which allows the medial axis or hub (shroud) contour to be a certain form. Using this method, various optimization criteria relating to the cross section area can be conveniently introduced into the design.

1.
Cedar
,
R. D.
, and
Stow
,
P.
, 1985, “
A Compatible Mixed Design and Analysis Finite Element Method for the Design of Turbomachinery Blades
,”
Int. J. Numer. Methods Fluids
0271-2091,
5
(
4
), pp.
331
345
.
2.
Jansen
,
W.
, and
Kirschner
,
A. M.
, 1974, “
Impeller Blade Design Method for Centrifugal Compressors
,”
Fluid Mechanics, Acoustics, and Design of Turbomachinery
, NASA, SP-304, pp.
537
563
.
3.
Tan
,
C. S.
,
Hawthorne
,
W. R.
, and
McCune
,
J. E.
, 1984, “
Theory of Blade Design for Large Deflections: Part II—Annular Cascades
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
106
(
2
), pp.
354
365
.
4.
Borges
,
J. E.
, 1990, “
A Three-Dimensional Inverse Method for Turbomachinery: Part I—Theory
,”
ASME J. Turbomach.
0889-504X,
112
(
3
), pp.
346
354
.
5.
Zangeneh
,
M.
, 1994, “
Inviscid-Viscous Interaction Method for Three-Dimensional Inverse Design of Centrifugal Impellers
,”
ASME J. Turbomach.
0889-504X,
116
(
2
), pp.
280
290
.
6.
Zannetti
,
L.
,
Marsilio
,
R.
, and
Larocca
,
F.
, 1988, “
Euler Solver for 3D Inverse Problems
,”
Advances and Applications in Computational Fluid Dynamics, ASME Winter Annual Meeting
, Chicago, pp.
71
79
.
7.
Casey
,
M.
,
Gersbach
,
F.
, and
Robinson
,
C.
, 2008, “
An Optimization Technique for Radial Compressor Impellers
,”
ASME Turbo Expo 2008: Power for Land, Sea, and Air
, Berlin, Vol.
6
, pp.
2401
2411
.
8.
Lu
,
J.
,
Xi
,
G.
, and
Qi
,
D.
, 2007, “
Optimization Method on Impeller Meridional Contour and 3D Blade
,”
Chin. J. Mech. Eng.
0577-6686,
20
(
06
), pp.
43
49
.
9.
Miyauchi
,
S.
,
Horiguchi
,
H.
,
Fukutomi
,
J.
, and
Takahashi
,
A.
, 2004, “
Optimization of Meridional Flow Channel Design of Pump Impeller
,”
Int. J. Rotating Mach.
1023-621X,
10
(
2
), pp.
115
119
.
10.
Demeulenaere
,
A.
, and
Braembussche
,
R. V.
, 1998, “
Three-Dimensional Inverse Method for Turbomachinery Blading Design
,”
ASME J. Turbomach.
0889-504X,
120
, pp.
247
255
.
11.
Paßrucker
,
H.
, and
Van den Braembussche
,
R. A.
, 2000, “
Inverse Design of Centrifugal Impellers by Simultaneous Modification of Blade Shape and Meridional Contour
,”
ASME Turbo Expo 2000
, Munich.
12.
Cai
,
Z.
,
Wu
,
K.
, and
Ou
,
Y.
, 1992, “
Calculation of the Meridian Surface for a Fan Impeller
,”
Journal of Huazhong University of Science and Technology
,
20
(
1
), pp.
77
82
.
13.
Blum
,
H.
, 1967, “
A Transformation for Extracting New Descriptors of Shape
,”
Models for the Perception of Speech and Visual Form
,
MIT Press
,
Cambridge, MA
, pp.
362
380
.
14.
Choi
,
H. I.
,
Choi
,
S. W.
, and
Moon
,
H. P.
, 1997, “
Mathematical Theory of Medial Axis Transform
,”
Pac. J. Math.
0030-8730,
181
(
1
), pp.
57
88
.
15.
Casey
,
M. V.
, 1983, “
A Computational Geometry for the Blades and Internal Flow Channels of Centrifugal Compressors
,”
ASME J. Eng. Power
0022-0825,
105
, pp.
288
295
.
You do not currently have access to this content.