The realistic simulation of cavitation on a marine propeller is important for the efficient design of the propeller. However, the flow characteristic that occurred on the marine propeller is complicated and difficult to predict due to the combined effects of turbulence, cavitation, and multiphase phenomena. There is still currently no turbulence model that can predict these combined effects satisfactory. The nonlinear turbulence model is therefore modified and applied to predict the cavitation on a marine propeller for the first time in this work. It is found that the nonlinear turbulence model can predict the cavitation and hence the thrust and torque coefficients much more accurately than the existing Reynolds-averaged Navier–Stokes turbulence models including the Reynolds-stress model.

1.
Kinnas
,
S. A.
, and
Fine
,
N. E.
, 1993, “
A Numerical Nonlinear Analysis of the Flow Around Two- and Three-Dimensional Partially Cavitating Hydrofoils
,”
J. Fluid Mech.
0022-1120,
254
, pp.
151
181
.
2.
Deshpande
,
M.
,
Feng
,
J.
, and
Merkle
,
C. L.
, 1994, “
Cavity Flow Predictions Based on the Euler Equations
,”
ASME J. Fluids Eng.
0098-2202,
116
(
1
), pp.
36
44
.
3.
Kinnas
,
S. A.
,
Choi
,
J. K.
,
Lee
,
H.
,
Young
,
Y. L.
,
Gu
,
H.
,
Kakar
,
K.
, and
Natarajan
,
S.
, 2002, “
Prediction of Cavitation Performance of Single or Multi-Component Propulsors and Their Interaction With the Hull
,”
Soc. Nav. Archit. Mar. Eng., Trans.
0081-1661,
110
, pp.
215
244
.
4.
Singhal
,
A. K.
,
Athavale
,
M. M.
,
Li
,
H. Y.
, and
Jiang
,
Y.
, 2002, “
Mathematical Basis and Validation of the Full Cavitation Model
,”
ASME J. Fluids Eng.
0098-2202,
124
(
3
), pp.
617
624
.
5.
Rhee
,
S. H.
,
Kawamura
,
T.
, and
Li
,
H.
, 2005, “
Propeller Cavitation Study Using an Unstructured Grid Based Navier-Stokes Solver
,”
ASME J. Fluids Eng.
0098-2202,
127
(
5
), pp.
986
994
.
6.
Lifante
,
C.
, and
Frank
,
T.
, 2008, “
Investigation of Pressure Fluctuations Caused by Turbulent and Cavitating Flow Around a P1356 Ship Propeller
,”
NAFEMS Seminar: Simulation komplexer Strömungsvorgänge (CFD)
.
7.
Nisizima
,
S.
, and
Yoshizawa
,
A.
, 1987, “
Turbulent Channel and Couette Flows Using an Anisotropic k-Epsilon Model
,”
AIAA J.
0001-1452,
25
, pp.
414
420
.
8.
Speziale
,
C. G.
, 1987, “
On Nonlinear k-l and k-ε Models of Turbulence
,”
J. Fluid Mech.
0022-1120,
178
, pp.
459
475
.
9.
Myong
,
H. K.
, and
Kasagi
,
N.
, 1990, “
Prediction of Anisotropy of the Near-Wall Turbulence With an Anisotropic Low-Reynolds-Number k-ε Turbulence Model
,”
ASME J. Fluids Eng.
0098-2202,
112
, pp.
521
524
.
10.
Rubinstein
,
R.
, and
Barton
,
J. M.
, 1990, “
Nonlinear Reynolds Stress Models and the Renormalization Group
,”
Phys. Fluids A
0899-8213,
2
, pp.
1472
1476
.
11.
Shih
,
T. H.
,
Zhu
,
J.
, and
Lumley
,
J. L.
, 1993, “
A Realizable Reynolds Stress Algebraic Equation Model
,”
NASA
, Technical Memorandum No. 105993.
12.
Lien
,
F. S.
,
Chen
,
W. L.
, and
Leschziner
,
M. A.
, 1996, “
Low-Reynolds-Number Eddy-Viscosity Modeling Based on Non-Linear Stress-Strain Vorticity Relations
,”
Engineering Turbulence Modeling and Experiments
, Vol.
3
,
Elsevier Science Publishers
, pp.
91
100
.
13.
Craft
,
T. J.
,
Launder
,
B. E.
, and
Suga
,
K.
, 1996, “
Development and Application of a Cubic Eddy-Viscosity Model of Turbulence
,”
Int. J. Heat Fluid Flow
0142-727X,
17
, pp.
108
115
.
14.
Apsley
,
D. D.
, and
Leschziner
,
M. A.
, 1998, “
A New Low-Reynolds-Number Nonlinear Two-Equation Turbulence Model for Complex Flows
,”
Int. J. Heat Fluid Flow
0142-727X,
19
, pp.
209
222
.
15.
Abe
,
K.
,
Jang
,
Y. J.
, and
Leschziner
,
M. A.
, 2003, “
An Investigation of Wall-Anisotropy Expression and Length-Scale Equations for Non-Linear Eddy-Viscosity Models
,”
Int. J. Heat Fluid Flow
0142-727X,
24
, pp.
181
198
.
16.
Juntasaro
,
V.
,
Buranarote
,
J.
,
Gururatana
,
S.
, and
Juntasaro
,
E.
, 2005, “
A New Reynolds-Stress Expression Based on DNS Data in Non-Linear Eddy-Viscosity Turbulence Model for Complex Flows
,”
Fourth International Symposium on Turbulence and Shear Flow Phenomena (TSFP 4)
, VA, Jun. 27–29.
17.
Juntasaro
,
V.
,
Dechaumphai
,
P.
, and
Marquis
,
A. J.
, 2005, “
Evaluation of the Damping Functions in Low-Reynolds-Number Non-Linear q-ζ Turbulence Model
,”
Int. J. Comput. Fluid Dyn.
1061-8562,
19
, pp.
225
234
.
18.
Tongkratoke
,
A.
,
Chinnarasri
,
C.
,
Pornprommin
,
A.
,
Dechaumphai
,
P.
, and
Juntasaro
,
V.
, 2009, “
Non-Linear Turbulence Models for Multiphase Recirculating Free-Surface Flow Over Stepped Spillways
,”
Int. J. Comput. Fluid Dyn.
1061-8562,
23
(
5
), pp.
401
409
.
19.
Boswell
,
R. J.
, 1971, “
Design Cavitation Performance and Open Water Performance of a Series of Research Skewed Propeller
,” NSRDC, Report No. 3339.
20.
Boussinesq
,
J.
, 1877, “
Theory de L’eco Reynolds Stresses Ulment Tourbillant, Memoires Presentes Par Divers Savants Sciences Mathematique at Physiques
,” pp.
46
50
.
21.
Choudhury
,
D.
, 1993, “
Introduction to the Renormalization Group Method and Turbulence Modeling
,” Fluent Inc., Technical Memorandum No. TM-107.
22.
Shih
,
T. H.
,
Liou
,
W. W.
,
Shabbir
,
A.
,
Yang
,
Z.
, and
Zhu
,
J.
, 1995, “
A New k-ε Eddy Viscosity Model for High Reynolds Number Turbulent Flows
,”
Comput. Fluids
0045-7930,
24
, pp.
227
238
.
23.
Launder
,
B. E.
, and
Spalding
,
D. B.
, 1974, “
The Numerical Computation of Turbulent Flows
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
3
, pp.
269
289
.
24.
Kim
,
S. E.
, and
Choudhury
,
D.
, 1995, “
A Near-Wall Treatment Using Wall Functions Sensitized to Pressure Gradient
,” ASME FED 217, ASME.
25.
Kader
,
B.
, 1993, “
Temperature and Concentration Profiles in Fully Turbulent Boundary Layers
,”
Int. J. Heat Mass Transfer
0017-9310,
24
, pp.
1541
1544
.
26.
Wilcox
,
D. C.
, 1998,
Turbulence Modeling for CFD
,
DCW Industries
,
La Canada, CA
.
27.
Menter
,
F. R.
, 1994, “
Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications
,”
AIAA J.
0001-1452,
32
, pp.
1598
1605
.
28.
Launder
,
B. E.
, 1989, “
Second-Moment Closure and Its Use in Modeling Turbulent Industrial Flows
,”
Int. J. Numer. Methods Fluids
0271-2091,
9
, pp.
963
985
.
29.
Launder
,
B. E.
, and
Sharma
,
B. I.
, 1974, “
Application of the Energy-Dissipation Model of Turbulence to the Calculation of Flow Near a Spinning Disc
,”
Lett. Heat Mass Transfer
0094-4548,
1
, pp.
131
137
.
You do not currently have access to this content.