This paper presents an experimental investigation of roughness effects on aerodynamic performance in a low-speed linear compressor cascade. Equivalent sandgrain roughnesses of 12μm, 180μm, 300μm, 425μm, and 850μm have been tested. In nondimensional terms, these roughnesses represent compressor blade roughnesses found in actual gas turbines. Downstream pressure, velocity, and angle have been measured with a five-hole probe at 0.3 chord downstream of the blade trailing edge. For the tested roughnesses of 180μm, 300μm, 425μm, and 850μm, the axial velocity ratio across the blade row decreases by 0.1%, 2.1%, 2.5%, and 5.4%, respectively. For the same cases, the exit flow angle deviation increases by 24%, 38%, 51%, and 70%, respectively. Finally, the mass-averaged total pressure loss increases by 12%, 44%, 132%, and 217%, respectively. Also, the loss increases more rapidly in the transitionally rough region. Thus, among the three parameters, the loss responds most sensitively to changes in compressor blade roughness.

1.
Song
,
T. W.
,
Sohn
,
J. L.
,
Kim
,
J. H.
,
Kim
,
T. S.
, and
Ro
,
S. T.
, 2005, “
An Analytic Approach to Predict the Fouling Phenomena in the Axial Compressor of the Industrial Gas Turbine
,”
Proc. Inst. Mech. Eng., Part A
0957-6509,
219
(
3
), pp.
203
212
.
2.
Taylor
,
R. P.
, 1990, “
Surface Roughness Measurements on Gas Turbine Blades
,”
ASME J. Turbomach.
0889-504X,
112
(
2
), pp.
175
180
.
3.
Bogard
,
D. G.
,
Schmidt
,
D. L.
, and
Tabbita
,
M.
, 1998, “
Characterization and Laboratory Simulation of Turbine Airfoil Surface Roughness and Associated Heated Transfer
,”
ASME J. Turbomach.
0889-504X,
120
(
2
), pp.
337
342
.
4.
Bons
,
J. P.
,
Taylor
,
R. P.
,
McClain
,
S. T.
, and
Rivir
,
R. B.
, 2001, “
The Many Faces of Turbine Surface Roughness
,”
ASME J. Turbomach.
0889-504X,
123
(
4
), pp.
739
748
.
5.
Yun
,
Y. I.
,
Park
,
I. Y.
, and
Song
,
S. J.
, 2005, “
Performance Degradation Due to Blade Surface Roughness in a Single-Stage Axial Turbine
,”
ASME J. Turbomach.
0889-504X,
127
(
1
), pp.
137
143
.
6.
Bammert
,
K.
, and
Sandstede
,
H.
, 1980, “
Measurement of the Boundary Layer Development Along a Turbine Blade With Rough Surfaces
,”
ASME J. Eng. Power
0022-0825,
102
(
4
), pp.
978
983
.
7.
Zhang
,
Q.
, and
Ligrani
,
P. M.
, 2006, “
Aerodynamic Losses of a Cambered Turbine Vane: Influences of Surface Roughness and Freestream Turbulence Intensity
,”
ASME J. Turbomach.
0889-504X,
128
(
3
), pp.
536
546
.
8.
Tay
,
G. F. K.
,
Kuhn
,
D. C. S.
, and
Tachie
,
M. F.
, 2009, “
Particle Image Velocimetry Study of Rough-Wall Turbulent Flows in Favorable Pressure Gradient
,”
ASME J. Fluids Eng.
0098-2202,
131
(
6
), pp.
061205
.
9.
Pailhas
,
G.
,
Touvet
,
Y.
, and
Aupoix
,
B.
, 2008, “
Effects of Reynolds Number and Adverse Pressure Gradient on a Turbulent Boundary Layer Developing on a Rough Surface
,”
J. Turbul.
1468-5248,
9
(
1
), pp.
1
24
.
10.
Millsaps
,
K. T.
,
Baker
,
L. J.
, and
Patterson
,
J. S.
, 2004, “
Detection and Localization of Fouling in a Gas Turbine Compressor From Aerodynamic Measurements
,”
Proceedings of the ASME Turbo Expo 2004
, Vienna, Austria, Paper No. GT2004-54173, Vol.
5B
, pp.
1867
1876
.
11.
Milsch
,
T. R.
, 1965, “
Total Pressure Losses Due to Increased Roughness
,” NACA, Report No. SP-36.
12.
Mal’tsev
,
Y. N.
, and
Shakhov
,
V. G.
, 1989, “
Influence of Roughness of Deposits in Compressor Cascade on Flow Lag Angle
,”
Soviet Aeronautics
,
32
(
3
), pp.
90
92
.
13.
Leipold
,
R.
,
Boese
,
M.
, and
Fottner
,
L.
, 2000, “
The Influence of Technical Surface Roughness Caused by Precision Forging on the Flow Around a Highly Loaded Compressor Cascade
,”
ASME J. Turbomach.
0889-504X,
122
(
3
), pp.
416
425
.
14.
Sohn
,
J. H.
, 2007, “
Influence of Blade Surface Roughness on Flow Characteristics in a Linear Compressor Cascade
,” MS thesis, Department of Mechanical and Aerospace Engineering, Seoul National University, Seoul.
15.
Saravanamuttoo
,
H. I. H.
,
Rogers
,
G. F. C.
, and
Cohen
,
H.
, 2001,
Gas Turbine Theory
, 5th ed.,
Prentice-Hall
,
Harlow
, p.
25
.
16.
Song
,
S. J.
,
Sohn
,
J. L.
, and
Kim
,
T. S.
, 2007, “
Final Report on the Effects of Compressor Fouling on Gas Turbine Performance and Diagnosis
,” Korea Midland Power, Co. Ltd., Seoul, Technical Report No. R-2005-0-016.
17.
Koch
,
C. C.
, and
Smith
,
L. H.
, Jr.
, 1976, “
Loss Sources and Magnitudes in Axial-Flow Compressors
,”
ASME J. Eng. Power
0022-0825,
98
(
3
), pp.
411
424
.
18.
Hummel
,
F.
,
Lotzerich
,
M.
,
Cardamone
,
P.
, and
Fottner
,
L.
, 2005, “
Surface Roughness Effects on Turbine Blade Aerodynamics
,”
ASME J. Turbomach.
0889-504X,
127
(
3
), pp.
453
461
.
19.
Roberts
,
S. K.
, and
Yaras
,
M. I.
, 2004, “
Boundary-Layer Transition Over Rough Surfaces With Elevated Free-Stream Turbulence
,”
Proceedings of ASME Turbo Expo 2004
, Vienna, Austria, Paper No. GT2004-53668, Vol.
4
, pp.
105
118
.
20.
Schreiber
,
H. -A.
,
Steinert
,
W.
, and
Küsters
,
B.
, 2002, “
Effects of Reynolds Number and Free-Stream Turbulence on Boundary Layer Transition in a Compressor Cascade
,”
ASME J. Turbomach.
0889-504X,
124
(
1
), pp.
1
9
.
21.
Brzek
,
B. G.
,
Cal
,
R. B.
,
Johansson
,
G.
, and
Castillo
,
L.
, 2008, “
Transitionally Rough Zero Pressure Gradient Turbulent Boundary Layers
,”
Exp. Fluids
0723-4864,
44
(
1
), pp.
115
124
.
You do not currently have access to this content.