In this technical brief, we report the results of a systematic numerical investigation of developing laminar pipe flow of yield stress fluids, obeying models of the Bingham-type. We are able to show that using a suitable choice of the Reynolds number allows, for high Reynolds number values at least, the development length to collapse to the Newtonian correlation. On the other hand, the development length remains a weak, nonmonotonic, function of the Bingham number at small values of the Reynolds number .
Issue Section:
Technical Briefs
1.
Bird
, R. B.
, Dai
, G. C.
, and Yarusso
, B. J.
, 1983, “The Rheology and Flow of Viscoplastic Materials
,” Rev. Chem. Eng.
0167-8299, 1
, pp. 2
–70
.2.
Barnes
, H. A.
, 1999, “The Yield Stress—A Review or ‘παντα ρει’—Everything Flows?
,” J. Non-Newtonian Fluid Mech.
0377-0257, 81
, pp. 133
–178
.3.
Mitsoulis
, E.
, 2007, “Flows of Viscoplastic Materials: Models and Computations
,” Rheology Reviews
, D. M.
Binding
, N. E.
Hudson
, and R.
Keunings
, eds., The British Society of Rheology
, Glasgow
, pp. 135
–178
.4.
Durst
, F.
, Ray
, S.
, Unsal
, B.
, and Bayoumi
, O. A.
, 2005, “The Development Lengths of Laminar Pipe and Channel Flows
,” ASME J. Fluids Eng.
0098-2202, 127
, pp. 1154
–1160
.5.
Poole
, R. J.
, and Ridley
, B. S.
, 2007, “Development Length Requirements for Fully-Developed Laminar Pipe Flow of Inelastic Non-Newtonian Liquids
,” ASME J. Fluids Eng.
0098-2202, 129
, pp. 1281
–1287
.6.
Chen
, S. S.
, Fan
, L. T.
, and Hwang
, C. L.
, 1970, “Entrance Region Flow of the Bingham Fluid in a Circular Pipe
,” AIChE J.
0001-1541, 16
, pp. 293
–299
.7.
Shah
, V. L.
, and Soto
, R. J.
, 1975, “Entrance Flow of a Bingham Fluid in a Tube
,” Appl. Sci. Res.
0003-6994, 30
, pp. 271
–278
.8.
Nowak
, Z.
, and Gajdeczko
, B.
, 1983, “Laminar Entrance Flow of a Bingham Fluid
,” Acta Mech.
0001-5970, 49
, pp. 191
–200
.9.
Vradis
, G. C.
, Dougher
, J.
, and Kumar
, S.
, 1993, “Entrance Pipe Flow and Heat Transfer for a Bingham Plastic
,” Int. J. Heat Mass Transfer
0017-9310, 36
, pp. 543
–552
.10.
Min
, T.
, Choi
, H. G.
, Yoo
, J. Y.
, and Choi
, H.
, 1997, “Laminar Convective Heat Transfer of a Bingham Plastic in a Circular Pipe—II. Numerical Approach—Hydrodynamically Developing Flow and Simultaneously Developing Flow
,” Int. J. Heat Mass Transfer
0017-9310, 40
, pp. 3689
–3701
.11.
Ookawara
, S.
, Ogawa
, K.
, Dombrowski
, N.
, Amooie-Foumeny
, E.
, and Riza
, A.
, 2000, “Unified Entry Length Correlation for Newtonian, Power Law and Bingham Fluids in Laminar Pipe Flow at Low Reynolds Number
,” J. Chem. Eng. Jpn.
0021-9592, 33
, pp. 675
–678
.12.
Chhabra
, R. P.
, and Richardson
, J. F.
, 2008, Non-Newtonian Flow and Applied Rheology
, 2nd ed., Butterworth-Heinemann
, Oxford
.13.
Patankar
, S. V.
, 1980, Numerical Heat Transfer and Fluid Flow
, Hemisphere
, Washington, DC
.14.
O’Donovan
, E. J.
, and Tanner
, R. I.
, 1984, “Numerical Study of the Bingham Squeeze Film Problem
,” J. Non-Newtonian Fluid Mech.
0377-0257, 15
, pp. 75
–83
.15.
Papanastasiou
, T. C.
, 1987, “Flow of Materials With Yield
,” J. Rheol.
0148-6055, 31
, pp. 385
–404
.16.
Al Khatib
, M. A. M.
, and Wilson
, S. D. R.
, 2001, “The Development of Poiseuille Flow of a Yield Stress Fluid
,” J. Non-Newtonian Fluid Mech.
0377-0257, 100
, pp. 1
–8
.17.
Escudier
, M. P.
, Poole
, R. J.
, Presti
, F.
, Dales
, C.
, Nouar
, C.
, Desaubry
, C.
, Graham
, L.
, and Pullum
, L.
, 2005, “Observations of Asymmetrical Flow Behaviour in Transitional Pipe Flow of Yield-Stress and Other Shear-Thinning Liquids
,” J. Non-Newtonian Fluid Mech.
0377-0257, 127
, pp. 143
–155
.Copyright © 2010
by American Society of Mechanical Engineers
You do not currently have access to this content.