This paper presents a systematic numerical investigation of different implicit large-eddy simulations (LESs) for massively separated flows. Three numerical schemes, a third-order accurate monotonic upwind scheme for scalar conservation laws (MUSCL) scheme, a fifth-order accurate MUSCL scheme, and a ninth-order accurate weighted essentially non-oscillatory (WENO) method, are tested in the context of separation from a gently curved surface. The case considered here is a simple wall-bounded flow that consists of a channel with a hill-type curvature on the lower wall. The separation and reattachment locations, velocity, and Reynolds stress profiles are presented and compared against solutions from classical LES simulations.

1.
Margolin
,
L. G.
,
Smolarkiewicz
,
P. K.
, and
Wyszogrodzki
,
A. A.
, 2002, “
Implicit Turbulence Modeling for High Reynolds Number Flows
,”
ASME J. Fluids Eng.
0098-2202,
124
, pp.
862
867
.
2.
Boris
,
J. P.
,
Grinstein
,
F. F.
,
Oran
,
E. S.
, and
Kolbe
,
R. L.
, 1992, “
New Insights Into Large Eddy Simulation
,”
Fluid Dyn. Res.
0169-5983,
10
, pp.
199
228
.
3.
Grinstein
,
F. F.
, and
DeVore
,
C. R.
, 1996, “
Dynamics of Coherent Structures and Transition to Turbulence in Free Square Jets
,”
Phys. Fluids
1070-6631,
8
(
5
), pp.
1237
1251
.
4.
Youngs
,
D. L.
, 1991, “
Three-Dimensional Numerical Simulation of Turbulent Mixing by Rayleigh-Taylor Instability
,”
Phys. Fluids A
0899-8213,
3
(
5
), pp.
1312
1320
.
5.
Drikakis
,
D.
, 2003, “
Advances in Turbulent Flow Computations Using High-Resolution Methods
,”
Prog. Aerosp. Sci.
0376-0421,
39
, pp.
405
424
.
6.
Fureby
,
C.
, and
Grinstein
,
F. F.
, 2002, “
Large Eddy Simulation of High Reynolds Number Free and Wall Bounded Flows
,”
J. Comput. Phys.
0021-9991,
181
, pp.
68
97
.
7.
Grinstein
,
F. F.
, and
Fureby
,
C.
, 2002, “
Recent Progress on MILES for High Reynolds Number Flows
,”
ASME J. Fluids Eng.
0098-2202,
124
, pp.
848
861
.
8.
Fureby
,
C.
, 2006, “I
LES and LES of Complex Engineering Turbulent Flows
,”
European Conference on Computational Fluid Dynamics (ECCOMAS CFD)
.
9.
Temmerman
,
L.
,
Leschziner
,
M. A.
,
Mellen
,
C. P.
, and
Fröhlich
,
J.
, 2003, “
Investigation of Wall-Function Approximations and Subgrid-Scale Models in Large Eddy Simulation of Separated Flow in a Channel With Streamwise Periodic Constrictions
,”
Int. J. Heat Fluid Flow
0142-727X,
24
, pp.
157
180
.
10.
Fröhlich
,
J.
,
Mellen
,
C. P.
,
Rodi
,
W.
,
Temmerman
,
L.
, and
Leschziner
,
M. A.
, 2005, “
Highly Resolved Large-Eddy Simulation of Separated Flow in a Channel With Streamwise Periodic Constrictions
,”
J. Fluid Mech.
0022-1120,
526
, pp.
19
66
.
11.
Breuer
,
M.
,
Kniazev
,
B.
, and
Abel
,
M.
, 2007, “
Development of Wall Models for LES of Separated Flows Using Statistical Evaluations
,”
Comput. Fluids
0045-7930,
36
, pp.
817
837
.
12.
Lenormand
,
E.
,
Sagaut
,
P.
,
Ta Phuoc
,
L.
, and
Comte
,
P.
, 2000, “
Subgrid-Scale Models for Large-Eddy Simulations of Compressible Wall Bounded Flows
,”
AIAA J.
0001-1452,
38
(
8
), pp.
1340
1350
.
13.
Drikakis
,
D.
, and
Rider
,
W. J.
, 2004,
High-Resolution Methods for Incompressible and Low-Speed Flows
,
Springer
,
New York
.
14.
Eberle
,
A.
, 1987, “
Characteristic Flux Averaging Approach to the Solution of Euler’s Equations
,”
Computational Fluid Dynamics
(
VKI Lecture Series
),
Rhode-St-Genýse
,
Belgium
.
15.
Drikakis
,
D.
, 2001, “
Uniformly High-Order Methods for Unsteady Incompressible Flows
,”
Godunov Methods: Theory and Applications
,
Kluwer Academic
,
Dordrecht, The Netherlands
, pp.
263
283
.
16.
Drikakis
,
D.
,
Govatsos
,
P. A.
, and
Papatonis
,
D. E.
, 1994, “
A Characteristic-Based Method for Incompressible Flows
,”
Int. J. Numer. Methods Fluids
0271-2091,
19
, pp.
667
685
.
17.
Harten
,
A.
, 1983, “
High Resolution Schemes for Hyperbolic Conservation
,”
J. Comput. Phys.
0021-9991,
49
, pp.
357
393
.
18.
van Leer
,
B.
, 1974, “
Towards the Ultimate Conservative Difference Scheme. Part II: Monotonicity and Conservation Combined in a Second Order Scheme
,”
J. Comput. Phys.
0021-9991,
14
, pp.
361
370
.
19.
Zóltak
,
J.
, and
Drikakis
,
D.
, 1998, “
Hybrid Upwind Methods for the Simulation of Unsteady Shock-Wave Diffraction Over a Cylinder
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
162
, pp.
165
185
.
20.
Kim
,
K. H.
, and
Kim
,
C.
, 2005, “
Accurate, Efficient and Monotonic Numerical Methods for Multi-Dimensional Compressible Flows. Part II: Multi-Dimensional Limiting Process
,”
J. Comput. Phys.
0021-9991,
208
, pp.
570
615
.
21.
Balsara
,
D. S.
, and
Shu
,
C. -W.
, 2000, “
Monotonicity Preserving Weighted Essentially Non-Oscillatory Schemes With Increasingly High Order of Accuracy
,”
J. Comput. Phys.
0021-9991,
160
, pp.
405
452
.
22.
Shu
,
C. -W.
, and
Osher
,
S.
, 1988, “
Efficient Implementation of Essentially Non-Oscillating Shock-Capturing Schemes
,”
J. Comput. Phys.
0021-9991,
77
, pp.
439
471
.
23.
Shu
,
C. -W.
, and
Osher
,
S.
, 1989, “
Efficient Implementation of Essentially Non-Oscillating Shock-Capturing Schemes II
,”
J. Comput. Phys.
0021-9991,
83
, pp.
32
78
.
24.
Jiang
,
G. -S.
, and
Shu
,
C. -W.
, 1996, “
Efficient Implementation of Weighted ENO Schemes
,”
J. Comput. Phys.
0021-9991,
126
, pp.
202
228
.
25.
Harten
,
A.
,
Engquist
,
B.
,
Osher
,
S.
, and
Chakravarthy
,
S. R.
, 1987, “
Uniformly High Order Accurate Essentially Non-Oscillatory Schemes, III
,”
J. Comput. Phys.
0021-9991,
71
, pp.
231
303
.
26.
Grinstein
,
F. F.
,
Margolin
,
L. G.
, and
Rider
,
W. J.
, 2007, “
A Rationale for Implicit LES
,”
Implicit Large Eddy Simulation
,
F. F.
Grinstein
,
L. G.
Margolin
, and
W. J.
Rider
, eds.,
Cambridge University Press
,
Cambridge
, Chap. 2, pp.
39
58
.
27.
Warming
,
R. F.
, and
Hyett
,
B. J.
, 1974, “
The Modified Equation Approach to the Stability and Accuracy Analysis of Finite-Difference Methods
,”
J. Comput. Phys.
0021-9991,
14
, pp.
159
179
.
28.
Thornber
,
B.
,
Mosedale
,
A.
,
Drikakis
,
D.
,
Youngs
,
D.
, and
Williams
,
R. J. R.
, 2008, “
An Improved Reconstruction Method for Compressible Flows With Low Mach Number Features
,”
J. Comput. Phys.
0021-9991,
227
, pp.
4873
4894
.
29.
Titarev
,
V. A.
, and
Toro
,
E. F.
, 2007, “
Analysis of ADER and ADER-WAF Schemes
,”
IMA J. Numer. Anal.
0272-4979,
27
, pp.
616
630
.
30.
Margolin
,
L. G.
, and
Rider
,
W. J.
, 2007, “
Numerical Regularization: The Numerical Analysis of Implicit Subgrid Models
,”
Implicit Large Eddy Simulation
,
F. F.
Grinstein
,
L. G.
Margolin
, and
W. J.
Rider
, eds.,
Cambridge University Press
,
Cambridge
, Chap. 5, pp.
195
221
.
31.
Hahn
,
M.
, 2008, “
Implicit Large-Eddy Simulation of Low-Speed Separated Flows Using High-Resolution Methods
,” Ph.D. thesis, Cranfield University, UK.
32.
Kim
,
K. H.
, and
Kim
,
C.
, 2005, “
Accurate, Efficient and Monotonic Numerical Methods for Multi-Dimensional Compressible Flows. Part II: Multi-Dimensional Limiting Process
,”
J. Comput. Phys.
0021-9991,
208
, pp.
570
615
.
33.
Castro
,
I. P.
, and
Epik
,
E.
, 1998, “
Boundary Layer Development After a Separated Region
,”
J. Fluid Mech.
0022-1120,
374
, pp.
91
116
.
34.
Na
,
Y.
, and
Moin
,
P.
, 1998, “
Direct Numerical Simulation of a Separated Turbulent Boundary Layer
,”
J. Fluid Mech.
0022-1120,
374
, pp.
379
405
.
35.
Jeong
,
J.
, and
Hussain
,
F.
, 1995, “
On the Identification of a Vortex
,”
J. Fluid Mech.
0022-1120,
285
, pp.
69
94
.
36.
Ducros
,
F.
,
Nicoud
,
F.
, and
Poinsot
,
T.
, 1998, “
Wall-Adapting Local Eddy-Viscosity Model for Simulations in Complex Geometries
,”
Numerical Methods for Fluid Dynamics VI
,
M. J.
Baines
, ed.,
Oxford University Computing Laboratory
,
Oxford, UK
, pp.
293
299
.
37.
Werner
,
H.
, and
Wengle
,
H.
, 1991, “
Large Eddy Simulation of Turbulent Flow Over and Around a Cube in a Plate Channel
,”
8th Symposium on Turbulent Shear Flows
,
Technical University of Munich
,
Germany
.
38.
Breuer
,
M.
, 2005, “
New Reference Data for the Hill Flow Test Case
,” online, URL: http://www.hy.bv.tum.de/DFG-CNRS/http://www.hy.bv.tum.de/DFG-CNRS/.
You do not currently have access to this content.