This paper presents a systematic numerical investigation of different implicit large-eddy simulations (LESs) for massively separated flows. Three numerical schemes, a third-order accurate monotonic upwind scheme for scalar conservation laws (MUSCL) scheme, a fifth-order accurate MUSCL scheme, and a ninth-order accurate weighted essentially non-oscillatory (WENO) method, are tested in the context of separation from a gently curved surface. The case considered here is a simple wall-bounded flow that consists of a channel with a hill-type curvature on the lower wall. The separation and reattachment locations, velocity, and Reynolds stress profiles are presented and compared against solutions from classical LES simulations.
1.
Margolin
, L. G.
, Smolarkiewicz
, P. K.
, and Wyszogrodzki
, A. A.
, 2002, “Implicit Turbulence Modeling for High Reynolds Number Flows
,” ASME J. Fluids Eng.
0098-2202, 124
, pp. 862
–867
.2.
Boris
, J. P.
, Grinstein
, F. F.
, Oran
, E. S.
, and Kolbe
, R. L.
, 1992, “New Insights Into Large Eddy Simulation
,” Fluid Dyn. Res.
0169-5983, 10
, pp. 199
–228
.3.
Grinstein
, F. F.
, and DeVore
, C. R.
, 1996, “Dynamics of Coherent Structures and Transition to Turbulence in Free Square Jets
,” Phys. Fluids
1070-6631, 8
(5
), pp. 1237
–1251
.4.
Youngs
, D. L.
, 1991, “Three-Dimensional Numerical Simulation of Turbulent Mixing by Rayleigh-Taylor Instability
,” Phys. Fluids A
0899-8213, 3
(5
), pp. 1312
–1320
.5.
Drikakis
, D.
, 2003, “Advances in Turbulent Flow Computations Using High-Resolution Methods
,” Prog. Aerosp. Sci.
0376-0421, 39
, pp. 405
–424
.6.
Fureby
, C.
, and Grinstein
, F. F.
, 2002, “Large Eddy Simulation of High Reynolds Number Free and Wall Bounded Flows
,” J. Comput. Phys.
0021-9991, 181
, pp. 68
–97
.7.
Grinstein
, F. F.
, and Fureby
, C.
, 2002, “Recent Progress on MILES for High Reynolds Number Flows
,” ASME J. Fluids Eng.
0098-2202, 124
, pp. 848
–861
.8.
Fureby
, C.
, 2006, “ILES and LES of Complex Engineering Turbulent Flows
,” European Conference on Computational Fluid Dynamics (ECCOMAS CFD)
.9.
Temmerman
, L.
, Leschziner
, M. A.
, Mellen
, C. P.
, and Fröhlich
, J.
, 2003, “Investigation of Wall-Function Approximations and Subgrid-Scale Models in Large Eddy Simulation of Separated Flow in a Channel With Streamwise Periodic Constrictions
,” Int. J. Heat Fluid Flow
0142-727X, 24
, pp. 157
–180
.10.
Fröhlich
, J.
, Mellen
, C. P.
, Rodi
, W.
, Temmerman
, L.
, and Leschziner
, M. A.
, 2005, “Highly Resolved Large-Eddy Simulation of Separated Flow in a Channel With Streamwise Periodic Constrictions
,” J. Fluid Mech.
0022-1120, 526
, pp. 19
–66
.11.
Breuer
, M.
, Kniazev
, B.
, and Abel
, M.
, 2007, “Development of Wall Models for LES of Separated Flows Using Statistical Evaluations
,” Comput. Fluids
0045-7930, 36
, pp. 817
–837
.12.
Lenormand
, E.
, Sagaut
, P.
, Ta Phuoc
, L.
, and Comte
, P.
, 2000, “Subgrid-Scale Models for Large-Eddy Simulations of Compressible Wall Bounded Flows
,” AIAA J.
0001-1452, 38
(8
), pp. 1340
–1350
.13.
Drikakis
, D.
, and Rider
, W. J.
, 2004, High-Resolution Methods for Incompressible and Low-Speed Flows
, Springer
, New York
.14.
Eberle
, A.
, 1987, “Characteristic Flux Averaging Approach to the Solution of Euler’s Equations
,” Computational Fluid Dynamics
(VKI Lecture Series
), Rhode-St-Genýse
, Belgium
.15.
Drikakis
, D.
, 2001, “Uniformly High-Order Methods for Unsteady Incompressible Flows
,” Godunov Methods: Theory and Applications
, Kluwer Academic
, Dordrecht, The Netherlands
, pp. 263
–283
.16.
Drikakis
, D.
, Govatsos
, P. A.
, and Papatonis
, D. E.
, 1994, “A Characteristic-Based Method for Incompressible Flows
,” Int. J. Numer. Methods Fluids
0271-2091, 19
, pp. 667
–685
.17.
Harten
, A.
, 1983, “High Resolution Schemes for Hyperbolic Conservation
,” J. Comput. Phys.
0021-9991, 49
, pp. 357
–393
.18.
van Leer
, B.
, 1974, “Towards the Ultimate Conservative Difference Scheme. Part II: Monotonicity and Conservation Combined in a Second Order Scheme
,” J. Comput. Phys.
0021-9991, 14
, pp. 361
–370
.19.
Zóltak
, J.
, and Drikakis
, D.
, 1998, “Hybrid Upwind Methods for the Simulation of Unsteady Shock-Wave Diffraction Over a Cylinder
,” Comput. Methods Appl. Mech. Eng.
0045-7825, 162
, pp. 165
–185
.20.
Kim
, K. H.
, and Kim
, C.
, 2005, “Accurate, Efficient and Monotonic Numerical Methods for Multi-Dimensional Compressible Flows. Part II: Multi-Dimensional Limiting Process
,” J. Comput. Phys.
0021-9991, 208
, pp. 570
–615
.21.
Balsara
, D. S.
, and Shu
, C. -W.
, 2000, “Monotonicity Preserving Weighted Essentially Non-Oscillatory Schemes With Increasingly High Order of Accuracy
,” J. Comput. Phys.
0021-9991, 160
, pp. 405
–452
.22.
Shu
, C. -W.
, and Osher
, S.
, 1988, “Efficient Implementation of Essentially Non-Oscillating Shock-Capturing Schemes
,” J. Comput. Phys.
0021-9991, 77
, pp. 439
–471
.23.
Shu
, C. -W.
, and Osher
, S.
, 1989, “Efficient Implementation of Essentially Non-Oscillating Shock-Capturing Schemes II
,” J. Comput. Phys.
0021-9991, 83
, pp. 32
–78
.24.
Jiang
, G. -S.
, and Shu
, C. -W.
, 1996, “Efficient Implementation of Weighted ENO Schemes
,” J. Comput. Phys.
0021-9991, 126
, pp. 202
–228
.25.
Harten
, A.
, Engquist
, B.
, Osher
, S.
, and Chakravarthy
, S. R.
, 1987, “Uniformly High Order Accurate Essentially Non-Oscillatory Schemes, III
,” J. Comput. Phys.
0021-9991, 71
, pp. 231
–303
.26.
Grinstein
, F. F.
, Margolin
, L. G.
, and Rider
, W. J.
, 2007, “A Rationale for Implicit LES
,” Implicit Large Eddy Simulation
, F. F.
Grinstein
, L. G.
Margolin
, and W. J.
Rider
, eds., Cambridge University Press
, Cambridge
, Chap. 2, pp. 39
–58
.27.
Warming
, R. F.
, and Hyett
, B. J.
, 1974, “The Modified Equation Approach to the Stability and Accuracy Analysis of Finite-Difference Methods
,” J. Comput. Phys.
0021-9991, 14
, pp. 159
–179
.28.
Thornber
, B.
, Mosedale
, A.
, Drikakis
, D.
, Youngs
, D.
, and Williams
, R. J. R.
, 2008, “An Improved Reconstruction Method for Compressible Flows With Low Mach Number Features
,” J. Comput. Phys.
0021-9991, 227
, pp. 4873
–4894
.29.
Titarev
, V. A.
, and Toro
, E. F.
, 2007, “Analysis of ADER and ADER-WAF Schemes
,” IMA J. Numer. Anal.
0272-4979, 27
, pp. 616
–630
.30.
Margolin
, L. G.
, and Rider
, W. J.
, 2007, “Numerical Regularization: The Numerical Analysis of Implicit Subgrid Models
,” Implicit Large Eddy Simulation
, F. F.
Grinstein
, L. G.
Margolin
, and W. J.
Rider
, eds., Cambridge University Press
, Cambridge
, Chap. 5, pp. 195
–221
.31.
Hahn
, M.
, 2008, “Implicit Large-Eddy Simulation of Low-Speed Separated Flows Using High-Resolution Methods
,” Ph.D. thesis, Cranfield University, UK.32.
Kim
, K. H.
, and Kim
, C.
, 2005, “Accurate, Efficient and Monotonic Numerical Methods for Multi-Dimensional Compressible Flows. Part II: Multi-Dimensional Limiting Process
,” J. Comput. Phys.
0021-9991, 208
, pp. 570
–615
.33.
Castro
, I. P.
, and Epik
, E.
, 1998, “Boundary Layer Development After a Separated Region
,” J. Fluid Mech.
0022-1120, 374
, pp. 91
–116
.34.
Na
, Y.
, and Moin
, P.
, 1998, “Direct Numerical Simulation of a Separated Turbulent Boundary Layer
,” J. Fluid Mech.
0022-1120, 374
, pp. 379
–405
.35.
Jeong
, J.
, and Hussain
, F.
, 1995, “On the Identification of a Vortex
,” J. Fluid Mech.
0022-1120, 285
, pp. 69
–94
.36.
Ducros
, F.
, Nicoud
, F.
, and Poinsot
, T.
, 1998, “Wall-Adapting Local Eddy-Viscosity Model for Simulations in Complex Geometries
,” Numerical Methods for Fluid Dynamics VI
, M. J.
Baines
, ed., Oxford University Computing Laboratory
, Oxford, UK
, pp. 293
–299
.37.
Werner
, H.
, and Wengle
, H.
, 1991, “Large Eddy Simulation of Turbulent Flow Over and Around a Cube in a Plate Channel
,” 8th Symposium on Turbulent Shear Flows
, Technical University of Munich
, Germany
.38.
Breuer
, M.
, 2005, “New Reference Data for the Hill Flow Test Case
,” online, URL: http://www.hy.bv.tum.de/DFG-CNRS/http://www.hy.bv.tum.de/DFG-CNRS/.Copyright © 2009
by American Society of Mechanical Engineers
You do not currently have access to this content.