This paper presents the results of the numerical simulations carried out to evaluate the performance of a high solidity Wells turbine designed for an oscillating water column wave energy conversion device. The Wells turbine has several favorable features (e.g., simplicity and high rotational speed) but is characterized by a relatively narrow operating range with high efficiency. The aim of this work is to investigate the flow-field through the turbine blades in order to offer a description of the complex flow mechanism that originates separation and, consequently, low efficiency at high flow-rates. Simulations have been performed by solving the Reynolds-averaged Navier–Stokes equations together with three turbulence models, namely, the Spalart–Allmaras, k-ω, and Reynolds-stress models. The capability of the three models to provide an accurate prediction of the complex flow through the Wells turbine has been assessed in two ways: the comparison of the computed results with the available experimental data and the analysis of the flow by means of the anisotropy invariant maps. Then, a detailed description of the flow at different flow-rates is provided, focusing on the interaction of the tip-leakage flow with the main stream and enlightening its role on the turbine performance.

1.
Clément
,
A.
,
McCullen
,
P.
,
Falcão
,
A.
,
Fiorentino
,
A.
,
Gardner
,
F.
,
Hammarlund
,
K.
,
Lemonis
,
G.
,
Lewis
,
T.
,
Nielsen
,
K.
,
Petroncini
,
S.
,
Pontes
,
M. -T.
,
Schild
,
P.
,
Sjöström
,
B. -O.
,
Sørensen
,
H. C.
, and
Thorpe
,
T.
, 2002, “
Wave Energy in Europe: Current Status and Perspectives
,”
Renewable Sustainable Energy Rev.
1364-0321,
6
, pp.
405
431
.
2.
Masuda
,
Y.
,
Miyazaki
,
Y.
,
Yamada
,
O.
, and
Hiramoto
,
A.
, 1981, “
Wave Power Generator Assembly
,” U.S. Patent No. 4405866.
3.
Raghunathan
,
S.
, 1995, “
The Wells Air Turbine for Wave Energy Conversion
,”
Prog. Aerosp. Sci.
0376-0421,
31
, pp.
335
386
.
4.
Brito-Melo
,
A.
,
Gato
,
L. M. C.
, and
Sarmento
,
A. J. N. A.
, 2002, “
Analysis of Wells Turbine Design Parameters by Numerical Simulation of the OWC Performance
,”
Ocean Eng.
0029-8018,
29
, pp.
1463
1477
.
5.
Curran
,
R.
,
Stewart
,
T. P.
, and
Whittaker
,
T. J. T.
, 1997, “
Design Synthesis of Oscillating Water Column Wave Energy Converters: Performance Matching
,”
Proc. Inst. Mech. Eng., Part A
0957-6509,
211
, pp.
489
505
.
6.
Thakker
,
A.
,
Frawley
,
P.
, and
Bajeet
,
E. S.
, 2001, “
Experimental Investigation of CA9 Blades on a 0.6 m Wells Turbine Rig
,”
Fourth European Conference on Turbomachinery
, Firenze, Italy, Paper No. ATI-CST-062/01.
7.
Cocco
,
D.
,
Nurzia
,
F.
, and
Puddu
,
P.
, 2001, “
Analisi Fluidodinamiche su Turbina Wells: Risultati Sperimentali e Teorici Ottenuti Presso il DIMECA
,”
III Convegno MiniHydro
,
Acquafredda di Maratea (PZ)
,
Italy
.
8.
Inoue
,
M.
,
Kaneko
,
K.
,
Setoguchi
,
T.
, and
Raghunathan
,
S.
, 1987, “
The Fundamental Characteristics and Future of Wells Turbine for Wave Power Generation
,”
Science of Machine
,
39
, pp.
275
280
0368-5713.
9.
Raghunathan
,
S.
,
Tan
,
C. P.
, and
Wells
,
N. A. J.
, 1982, “
Theory and Performance of a Wells Turbine
,”
J. Energy
0146-1412,
6
, pp.
157
160
.
10.
Gato
,
L. M. C.
, and
de O. Falcão
,
A. F.
, 1984, “
On the Theory of the Wells Turbine
,”
Trans. ASME: J. Eng. Gas Turbines Power
0742-4795,
106
, pp.
628
633
.
11.
Thakker
,
A.
,
Frawley
,
P.
, and
Bajeet
,
E. S.
, 2001, “
Performance Simulation of CA9 Wells Turbine Rotor Using a 3-D Navier-Stokes Explicit Solver
,”
Fourth European Conference on Turbomachinery
, Firenze, Italy, Paper No. ATI-CST-063/01.
12.
Kim
,
T. H.
,
Setoguchi
,
T.
,
Kaneko
,
K.
, and
Raghunathan
,
S.
, 2002, “
Numerical Investigation on the Effect of Blade Sweep on the Performance of Wells Turbine
,”
Renewable Energy
0960-1481,
25
, pp.
235
248
.
13.
Dhanasekaran
,
T.
, and
Govardhan
,
M.
, 2005, “
Computational Analysis of Performance and Flow Investigation on Wells Turbine for Wave Energy Conversion
,”
Renewable Energy
0960-1481,
30
, pp.
2129
2147
.
14.
Thakker
,
A.
, and
Dhanasekaran
,
T. S.
, 2004, “
Computed Effects of Tip Clearance on Performance of Impulse Turbine for Wave Energy Conversion
,”
Renewable Energy
0960-1481,
29
, pp.
529
547
.
15.
Torresi
,
M.
,
Camporeale
,
S. M.
,
Strippoli
,
P. D.
, and
Pascazio
,
G.
, 2008, “
Accurate Numerical Simulation of a High Solidity Wells Turbine
,”
Renewable Energy
0960-1481,
33
, pp.
735
747
.
16.
Boccotti
,
P.
, 2004,
Gli impianti REWEC
,
Editoriale Bios
,
Cosenza, Italy
.
17.
Boccotti
,
P.
, 2007, “
Caisson Breakwaters Embodying an OWC With a Small Opening–Part I: Theory
,”
Ocean Eng.
0029-8018,
34
(
5–6
), pp.
806
819
.
18.
Camporeale
,
S.
,
Torresi
,
M.
,
Fortunato
,
B.
, and
Filianoti
,
P.
, 2003, “
Design of a Self-Rectifying Hydraulic Turbine for a Sea-Wave Energy Conversion Device
,”
16th International Conference on Efficiency, Costs, Optimization, Simulation and Environmental Impact of Energy Systems
, Copenhagen, Denmark, Jun. 30–Jul. 2.
19.
Boccotti
,
P.
, 2007, “
Comparison Between a U-OWC and a Conventional OWC
,”
Ocean Eng.
0029-8018,
34
(
5–6
), pp.
799
805
.
20.
Torresi
,
M.
,
Camporeale
,
S.
, and
Pascazio
,
G.
, 2007, “
Performance of a Small Prototype of a High Solidity Wells Turbine
,”
Seventh European Conference on Turbomachinery Fluid Dynamics and Thermodynamics
, Athens, Greece, Mar. 5–9.
21.
Torresi
,
M.
,
Camporeale
,
S.
, and
Pascazio
,
G.
, 2007, “
Experimental and Numerical Investigation on the Performance of a Wells Turbine Prototype
,”
Seventh European Wave and Tidal Energy Conference
, Porto, Portugal, Sept. 11–14.
22.
Filianoti
,
P.
, and
Camporeale
,
S.
, 2007, “
A Small Scale Field Experiment on a Wells Turbine Model
,”
Seventh European Wave and Tidal Energy Conference
, Porto, Portugal, Sept. 11–14.
23.
Camporeale
,
S.
,
Torresi
,
M.
,
Pascazio
,
G.
, and
Fortunato
,
B.
, 2003, “
A 3D Unsteady Analysis of a Wells Turbine in a Sea-Wave Energy Conversion Device
,”
ASME TURBO EXPO 2003
, Atlanta, GA, Paper No. GT2003-38715.
24.
Torresi
,
M.
,
Camporeale
,
S. M.
,
Pascazio
,
G.
, and
Fortunato
,
B.
, 2004,
Fluid Dynamic Analysis of a Low Solidity Wells Turbine
,
59° Congresso ATI
, Genova, Italy.
25.
Torresi
,
M.
,
Camporeale
,
S. M.
, and
Pascazio
,
G.
, 2006, “
Studio Teorico Dell’influenza dei Parametri Geometrici Sulle Prestazioni di Turbine Wells
,”
61° Congresso ATI
, Perugia, Italy.
26.
Spalart
,
P. R.
, and
Allmaras
,
S. R.
, 1994, “
A One-Equation Turbulence Model for Aerodynamic Flows
,”
Rech. Aerosp.
0034-1223,
1
, pp.
5
21
.
27.
Menter
,
F. R.
, 1994, “
Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications
,”
AIAA J.
0001-1452,
32
, pp.
1598
1605
.
28.
Wilcox
,
D. C.
, 1998,
Turbulence Models for CFD
,
DCW Industries, Inc.
,
La Canada, CA
.
29.
Launder
,
B. E.
, 1989, “
Second-Moment Closure and Its Use in Modeling Turbulent Industrial Flows
,”
Int. J. Numer. Methods Fluids
0271-2091,
9
, pp.
963
985
.
30.
Launder
,
B. E.
, 1989, “
Second-Moment Closure: Present… and Future?
,”
Int. J. Heat Fluid Flow
0142-727X,
10
, pp.
282
300
.
31.
Wells
,
A. A.
, 1976, “
Fluid Driven Rotary Transducer
,” Br. Patent No. 1595700.
32.
Henriques
,
J. C. C.
, and
Gato
,
L. M. C.
, 2002, “
Use of a Residual Distribution Euler Solver to Study the Occurrence of Transonic Flow in Wells Turbine Rotor Blades
,”
Comput. Mech.
0178-7675,
29
, pp.
243
253
.
33.
Horlock
,
J. H.
, 1978,
Actuator Disk Theory
,
McGraw-Hill
,
London
.
34.
Curran
,
R.
, and
Gato
,
L. M. C.
, 1997, “
The Energy Conversion Performance of Several Types of Wells Turbine Designs
,”
Proc. Inst. Mech. Eng., Part A
0957-6509,
211
, pp.
133
145
.
35.
Lumley
,
J. L.
, 1979, “
Computational Modeling of Turbulent Flows
,”
Adv. Appl. Mech.
0065-2156,
18
, pp.
123
176
.
36.
Escudié
,
R.
, and
Liné
,
A.
, 2006, “
Analysis of Turbulence Anisotropy in a Mixing Tank
,”
Chem. Eng. Sci.
0009-2509,
61
, pp.
2771
2779
.
37.
Im
,
Y. H.
,
Huh
,
H. Y.
, and
Kim
,
K. -Y.
, 2002, “
Analysis of Impinging and Countercurrent Stagnating Flows by Reynolds Stress Model
,”
ASME Trans. J. Fluids Eng.
0098-2202,
124
, pp.
706
718
.
38.
Krogstad
,
P. -Å.
, and
Torbergsen
,
L. E.
, 2000, “
Invariant Analysis of Turbulent Pipe Flow
,”
Flow, Turbul. Combust.
1386-6184,
64
, pp.
161
181
.
You do not currently have access to this content.