Analytical analysis of fluid flow in an annular microchannel subjected to uniform wall injection at various Reynolds numbers is presented. The classical Navier–Stokes equations are used in the present study. Mathematically, using an appropriate change of variable, Navier–Stokes equations are transformed to a set of nonlinear ordinary differential equations. The governing equations are analytically solved using series solution method. Some analytical results are given for the prediction of velocity profiles and pressure distributions in annular microchannels. The agreement between the computational fluid dynamics and the analytical predictions is very good. However, the analytical results are valid in a limited range of radius ratios and needs more study.

1.
Stone
,
H. A.
, and
Kim
,
S.
, 2001, “
Microfluidics: Basic Issues, Applications, and Challenges
,”
AIChE J.
0001-1541,
47
(
6
), pp.
1250
1254
.
2.
Meinhart
,
C. D.
,
Wereley
,
S. T.
, and
Santiago
,
J. G.
, 1999, “
PIV Measurement of a Microchannel Flow
,”
Exp. Fluids
0723-4864,
27
(
5
), pp.
414
419
.
3.
Jensen
,
K. F.
, 1999, “
Micromechanical Systems: Status, Challenges, and Opportunities
,”
AIChE J.
0001-1541,
45
(
10
), pp.
2051
2054
.
4.
Happel
,
J.
, and
Brenner
,
H.
, 1983,
Low Reynolds Number Hydrodynamics
,
Martinus Nijhoff
,
Kluwer, Boston
.
5.
Gelb
,
A.
,
Gleeson
,
J. P.
,
West
,
J.
, and
Roche
,
O. M.
, 2004, “
Modelling Annular Micromixers
,”
SIAM J. Appl. Math.
0036-1399,
64
(
4
), pp.
1294
1310
.
6.
Chang
,
M. H.
, and
Chen
,
C. K.
, 1999, “
Hydro-Magnetic Stability of Current-Induced Flow in a Small Gap Between Concentric Cylinders
,”
ASME J. Fluids Eng.
0098-2202,
121
, pp.
548
554
.
8.
Erickson
,
D.
, and
Li
,
D.
, 2004, “
Integrated Microfluidic Devices
,”
Anal. Chim. Acta
0003-2670,
507
(
1
), pp.
11
26
.
9.
Nouri-Borujerdi
,
A.
, and
Layeghi
,
M.
, 2005, “
A Review of Concentric Annular Heat Pipes
,”
Heat Transfer Eng.
0145-7632,
26
(
6
), pp.
45
58
.
10.
Langer
,
R.
, 2000, “
Biomaterials: Status, Challenges, and Perspectives
,”
AIChE J.
0001-1541,
46
(
7
), pp.
1286
1289
.
11.
Kim
,
S.
, and
Karrila
,
S. J.
, 1991,
Microhydrodynamics Principles and Selected Applications
,
Butterworth-Heinemann
,
Stoneham, MA
.
12.
Gallardo
,
B. S.
,
Gupta
,
V. K.
,
Eagerton
,
F. D.
,
Jong
,
L. I.
,
Craig
,
V. S.
,
Shah
,
R. R.
, and
Abbott
,
N. L.
, 1999, “
Electrochemical Principles for Active Control of Liquids on Submillimeter Scales
,”
Science
0036-8075,
283
(
5396
), pp.
57
60
.
13.
Chang
,
H. C.
, 2001,
Bubble/Drop Transport in Microchannels
(CRC Handbook of MEMS)
M.
Gad-el-Hak
, ed.,
CRC
,
New York
, p.
11
-
1
.
14.
Sharp
,
K. V.
,
Adrian
,
R. J.
,
Santiago
,
J. G.
, and
Molho
,
J. I.
, 2001,
Liquid Flow in Microchannels
(CRC Handbook of MEMS)
M.
Gad-el-Hak
, ed.,
CRC Press
,
New York
, pp.
6
-1–6-
38
.
15.
Arkilic
,
E. B.
,
Schmidt
,
M. A.
, and
Breuer
,
K. S.
, 1997, “
Gaseous Slip Flow in Long Microchannels
,”
J. Microelectromech. Syst.
1057-7157,
6
(
2
), pp.
167
178
.
16.
Pit
,
R.
,
Hervet
,
H.
, and
Leger
,
L.
, 2000, “
Direct Experimental Evidence of Slip in Hexadecane: Solid Interfaces
,”
Phys. Rev. Lett.
0031-9007,
85
(
5
), pp.
980
983
.
17.
Berman
,
A. S.
, 1953, “
Laminar Flow in Channels With Porous Walls
,”
J. Appl. Phys.
0021-8979,
24
(
9
), pp.
1232
1235
.
18.
Terrill
,
R. M.
, 1964, “
Laminar Flow in a Uniformly Porous Channel
,”
Aeronaut. Q.
0001-9259,
15
(
3
), pp.
299
310
.
19.
Terrill
,
R. M.
, 1982, “
An Exact Solution for Flow in a Porous Pipe
,”
ZAMP
0044-2275,
33
(
4
), pp.
547
552
.
20.
Zlnchenko
,
V. I.
, and
Fedorova
,
O. P.
, 1976, “
Analysis of Flow in an Annular Duct With Large Injection at the Walls
,”
Fluid Dyn.
0015-4628,
11
(
3
), pp.
458
461
.
21.
Layeghi
,
M.
, 2004, “
Fluid Flow in Cylindrical Microchannels Subjected to Uniform Wall Injection
,”
Proceeding of American Physical Society, 57th Annual Meeting of the Division of Fluid Dynamics
,
Seattle, WA
, Nov. 21–23, Paper No. NC009.
22.
Gad-el-Hak
,
M.
, 2001, “
Flow Physics in MEMS
,”
Mec. Ind.
,
2
, pp.
313
341
.
23.
Nouri-Borujerdi
,
A.
, and
Layeghi
,
M.
, 2004, “
A Numerical Analysis of Vapor Flow in Concentric Annular Heat Pipes
,”
ASME J. Fluids Eng.
0098-2202,
126
(
3
), pp.
442
448
.
You do not currently have access to this content.