Linear stability analysis of fully developed axisymmetric steady spatially modulated Taylor–Couette flow (TCF) is carried out in the narrow-gap limit. In contrast to unforced TCF, only the vortical base flow is possible in the forced case. It is found that the forcing tends to generally destabilize the base flow, especially around the critical point corresponding to unforced flow. Both the critical Taylor number and wave number are found to essentially linearly decrease with modulation amplitude.
Issue Section:
Technical Briefs
1.
Eagles
, P. M.
, and Eames
, K.
, 1983, “Taylor Vortices Between Almost Cylindrical Boundaries
,” J. Eng. Math.
0022-0833, 17
, pp. 263
–280
.2.
Ning
, L.
, Ahlers
, G.
, and Cannell
, D. S.
, 1990, “Wave-Number Selection and Traveling Vortex Waves in Spatially Ramped Taylor–Couette Flow
,” Phys. Rev. Lett.
0031-9007, 64
, pp. 1235
–1238
.3.
Koschmieder
, E. L.
, 1975, “Effect of Finite Disturbances on Axisymmetric Taylor Vortex Flow
,” Phys. Fluids
0031-9171, 18
, pp. 499
–503
.4.
Ikeda
, E.
, and Maxworthy
, T.
, 1994, “Spatially Forced Corotating Taylor–Couette Flow
,” Phys. Rev. E
1063-651X, 49
, pp.5218
–5224
.5.
Painter
, B. D.
, and Behringer
, R. P.
, 1998, “Effects of Spatial Disorder on the Transition to Taylor Vortex Flow
,” Europhys. Lett.
0295-5075, 44
, pp. 599
–605
.6.
Zimmermann
, W.
, Painter
, B. D.
, and Behringer
, R. P.
, 1998, “Pattern Formation in an Inhomogeneous Environment
,” Eur. Phys. J. B
1434-6028, 5
, pp. 757
–770
.7.
Li
, Z.
, and Khayat
, R. E.
, 2004, “Pattern Formation in Weakly Forced Taylor–Couette Flow
,” Phys. Rev. E
1063-651X, 69
, 046305
.8.
Zhang
, J.
, and Khayat
, R. E.
, 2006, “Finite-Amplitude Modulated Taylor–Couette Flow
,” Phys. Fluids
1070-6631, 18
, 044105
.9.
Wimmer
, M.
, 1995, “An Experimental Investigation of Taylor Vortex Flow Between Conical Cylinders
,” J. Fluid Mech.
0022-1120, 292
, pp. 205
–227
.10.
Wiener
, R. J.
, Snyder
, G. L.
, Prange
, M. P.
, Frediani
, D.
, and Diaz
, P. R.
, 1997, “Periodic-Doubling Cascade to Chaotic Phase Dynamics in Taylor Vortex Flow With Hourglass Geometry
,” Phys. Rev. E
1063-651X, 55
, pp. 5489
–5497
.11.
Koschmieder
, E. L.
, 1992, Bénard Cells and Taylor Vortices
(Cambridge University Press
, London
).12.
Codington
, S. A.
, and Levinson
, N.
, 1965, Theory of Ordinary Differential Equations
, McGraw-Hill
, New York
.13.
Peyret
, R.
, 2002, Spectral Methods for Incompressible Viscous Flow
(Applied Mathematics Science), Springer
, New York
, Vol. 148
.14.
Ache
, G. A.
, and Cores
, D.
, 1995, “Note on the Two-Point Boundary Value Solution of the Orr–Sommerfeld Stability Equation
,” J. Comput. Phys.
0021-9991, 116
, pp. 180
–183
.Copyright © 2008
by American Society of Mechanical Engineers
You do not currently have access to this content.