Linear stability analysis of fully developed axisymmetric steady spatially modulated Taylor–Couette flow (TCF) is carried out in the narrow-gap limit. In contrast to unforced TCF, only the vortical base flow is possible in the forced case. It is found that the forcing tends to generally destabilize the base flow, especially around the critical point corresponding to unforced flow. Both the critical Taylor number and wave number are found to essentially linearly decrease with modulation amplitude.

1.
Eagles
,
P. M.
, and
Eames
,
K.
, 1983, “
Taylor Vortices Between Almost Cylindrical Boundaries
,”
J. Eng. Math.
0022-0833,
17
, pp.
263
280
.
2.
Ning
,
L.
,
Ahlers
,
G.
, and
Cannell
,
D. S.
, 1990, “
Wave-Number Selection and Traveling Vortex Waves in Spatially Ramped Taylor–Couette Flow
,”
Phys. Rev. Lett.
0031-9007,
64
, pp.
1235
1238
.
3.
Koschmieder
,
E. L.
, 1975, “
Effect of Finite Disturbances on Axisymmetric Taylor Vortex Flow
,”
Phys. Fluids
0031-9171,
18
, pp.
499
503
.
4.
Ikeda
,
E.
, and
Maxworthy
,
T.
, 1994, “
Spatially Forced Corotating Taylor–Couette Flow
,”
Phys. Rev. E
1063-651X,
49
, pp.
5218
5224
.
5.
Painter
,
B. D.
, and
Behringer
,
R. P.
, 1998, “
Effects of Spatial Disorder on the Transition to Taylor Vortex Flow
,”
Europhys. Lett.
0295-5075,
44
, pp.
599
605
.
6.
Zimmermann
,
W.
,
Painter
,
B. D.
, and
Behringer
,
R. P.
, 1998, “
Pattern Formation in an Inhomogeneous Environment
,”
Eur. Phys. J. B
1434-6028,
5
, pp.
757
770
.
7.
Li
,
Z.
, and
Khayat
,
R. E.
, 2004, “
Pattern Formation in Weakly Forced Taylor–Couette Flow
,”
Phys. Rev. E
1063-651X,
69
,
046305
.
8.
Zhang
,
J.
, and
Khayat
,
R. E.
, 2006, “
Finite-Amplitude Modulated Taylor–Couette Flow
,”
Phys. Fluids
1070-6631,
18
,
044105
.
9.
Wimmer
,
M.
, 1995, “
An Experimental Investigation of Taylor Vortex Flow Between Conical Cylinders
,”
J. Fluid Mech.
0022-1120,
292
, pp.
205
227
.
10.
Wiener
,
R. J.
,
Snyder
,
G. L.
,
Prange
,
M. P.
,
Frediani
,
D.
, and
Diaz
,
P. R.
, 1997, “
Periodic-Doubling Cascade to Chaotic Phase Dynamics in Taylor Vortex Flow With Hourglass Geometry
,”
Phys. Rev. E
1063-651X,
55
, pp.
5489
5497
.
11.
Koschmieder
,
E. L.
, 1992,
Bénard Cells and Taylor Vortices
(
Cambridge University Press
,
London
).
12.
Codington
,
S. A.
, and
Levinson
,
N.
, 1965,
Theory of Ordinary Differential Equations
,
McGraw-Hill
,
New York
.
13.
Peyret
,
R.
, 2002,
Spectral Methods for Incompressible Viscous Flow
(Applied Mathematics Science),
Springer
,
New York
, Vol.
148
.
14.
Ache
,
G. A.
, and
Cores
,
D.
, 1995, “
Note on the Two-Point Boundary Value Solution of the Orr–Sommerfeld Stability Equation
,”
J. Comput. Phys.
0021-9991,
116
, pp.
180
183
.
You do not currently have access to this content.