The effect of viscoelasticity on the thermodynamic performance of a thermally decomposable lubricant subjected to shear and Arrhenius kinetics is investigated with direct numerical simulations. A numerical algorithm based on the finite difference method is implemented in time and space with the Oldroyd-B constitutive equation as the model for the viscoelastic liquids. We report enhanced efficiency in the case of a polymeric lubricant as compared with the purely viscous lubricant. In particular, it is demonstrated that the use of polymeric liquids helps to delay the onset of thermal runaway as compared with progressively Newtonian liquids.
1.
Hutson
, M. H.
, Hauger
, S. A.
, and Edwards
, G.
, 2002, “Thermal Diffusion and Chemical Kinetics in Laminar Biomaterial Due to Heating by a Free-Electron Laser
,” Phys. Rev. E
1063-651X, 65
, 061906
.2.
Adler
, J.
, 1991, “Thermal Explosion Theory With Arrhenius Kinetics: Homogeneous and Inhomogeneous Media
,” Proc. R. Soc. London, Ser. A
1364-5021, 433
, pp. 329
–335
.3.
Boddington
, T.
, Gray
, P.
, and Wake
, G. C.
, 1977, “Criteria for Thermal Explosions With and Without Reactant Consumption
,” Proc. R. Soc. London, Ser. A
1364-5021, 357
, pp. 403
–422
.4.
Yesilata
, B.
, 2006, “Viscous Heating Effects in Viscoelastic Flow Between Rotating Parallel-Disks
,” Turk. J. Eng. Environ. Sci.
1300-0160, 26
, pp. 503
–511
.5.
Straughan
, B.
, 1998, Explosive Instabilities in Mechanics
, Springer
, New York
.6.
Bair
, S.
, Qureshi
, F.
, and Khonsari
, M.
, 1994, “Adiabatic Shear Localization in a Liquid Lubricant Under Pressure
,” ASME J. Tribol.
0742-4787, 116
, pp. 705
–709
.7.
Liebman
, J. F.
, Afeefy
, H. Y.
, and Slayden
, S. W.
, 2000, The Amide Linkage
, Wiley
, New York
, Chap. V.8.
Lim
, J. J.
, and Shamos
, M. H.
, 1974, Biopolymers
0006-3525, 13
, pp. 1791
.9.
Dressler
, M.
, Edwards
, B. J.
, and Öttinger
, H. C.
, 1999, “Macroscopic Thermodynamics of Flowing Polymeric Liquids
,” Rheol. Acta
0035-4511, 38
, pp. 117
–136
.10.
Olagunju
, D. O.
, 2005, “Secondary Flow in Non-Isothermal Viscoelastic Parallel-Plate Flow
,” J. Eng. Math.
0022-0833, 51
, pp. 325
–338
.11.
Olagunju
, D. O.
, Cook
, L. P.
, and McKinley
, G. H.
, 2002, “Effect of Viscous Heating on Linear Stability of Viscoelastic Cone-and-Plate Flow: Axisymmetric Case
,” J. Non-Newtonian Fluid Mech.
0377-0257, 102
(2
), pp. 321
–342
.12.
Al-Mubaiyedh
, U. A.
, Sureshkumar
, R.
, and Khomami
, B.
, 1999, “Influence of Energetics on the Stability of Viscoelastic Taylor–Couette Flow
,” Phys. Fluids
1070-6631, 11
(11
), pp. 3217
–3226
.13.
Wapperom
, P.
, Hulsen
, M. A.
, and van der Zanden
, J. P. P. M.
, 1998, “A Numerical Method for Steady and Nonisothermal Viscoelastic Fluid Flow for High Deborah and Péclet Numbers
,” Rheol. Acta
0035-4511, 37
, pp. 73
–88
.14.
Frank-Kamenetskii
, D. A.
, 1969, Diffusion and Heat Transfer in Chemical Kinetics
, 2nd ed., Plenum
, New York
.15.
Chinyoka
, T.
, Renardy
, Y. Y.
, Renardy
, M.
, and Khismatullin
, D. B.
, 2005, “Two-Dimensional Study of Drop Deformation Under Simple Shear for Oldroyd-B Liquids
,” J. Non-Newtonian Fluid Mech.
, 130
, pp. 45
–56
. 0377-025716.
Renardy
, Y. M.
, Chinyoka
, T.
, Khismatullin
, D. B.
, and Li
, J.
, 2004, “A Viscoelastic VOF-PROST Code for the Study of Drop Deformation
,” Proceedings of the ASME Heat Transfer/Fluids Engineering Summer Conference
, Charlotte, NC, July 11–15, HTFED CDROM Track 5.17.
Chinyoka
, T.
, 2004, “Numerical Simulation of Stratified Flows and Droplet Deformation in 2D Shear Flow of Newtonian and Viscoelastic Fluids
,” Ph.D. thesis, Virginia Polytechnic Institute and State University, Blacksburg, VA.Copyright © 2008
by American Society of Mechanical Engineers
You do not currently have access to this content.