This paper presents the results of a computational analysis on a three-dimensional unsteady flow inside a resonant cavity. The cavity was fully immersed in a channel flow, had a squared cross section, and a spanwise aspect ratio equal to 3. It was partly closed to the inflow by slits upstream and downstream. The lid was 14 of the cavity length. The Reynolds number was Re=8000 based on the freestream velocity. The numerical simulations were carried out for flow times up to 380 units. Results are presented for a symmetric cavity with respect to the normal to the freestream. The analysis shows complex three-dimensional vortex structures, with Taylor–Görtler-type vortices, filament vortices, and other secondary vortices, some having a relatively short life-span. It is shown that the flow is substantially symmetric, with small spanwise instabilities. It is further shown that there is an asymptotic tendency to an unsteady flow with large wavelengths. A primary vortex establishes at the center of the cavity. Most vortex regions disappear and that they depend on the type of geometry and the state of the boundary layer at the inlet.

1.
Rhee
,
H. S.
,
Koseff
,
J. R.
, and
Street
,
R. L.
, 1984, “
Flow Visualization of a Recirculating Flow by Rheoscopic Liquid and Liquid Crystal Techniques
,”
Exp. Fluids
0723-4864,
2
, pp.
57
64
.
2.
Migeon
,
C.
, 2002, “
Details on the Start-Up Development of the Taylor-Görtler-Like Vortices Inside a Square-Section Lid-Driven Cavity for 1,000<Re<3,200
,”
Exp. Fluids
0723-4864,
33
(
4
), pp.
594
602
.
3.
Moffatt
,
H. K.
, 1964, “
Viscous and Resistive Eddies Near a Sharp Corner
,”
J. Fluid Mech.
0022-1120,
18
(
1
), pp.
1
18
.
4.
Koseff
,
J. R.
, and
Street
,
R. L.
, 1984, “
The Lid-Driven Cavity Flow: A Synthesis of Qualitative and Quantitative Observations
,”
ASME J. Fluids Eng.
0098-2202,
106
, pp.
390
398
.
5.
Koseff
,
J. R.
, and
Street
,
R. L.
, 1984, “
On End-Wall Effects in a Lid-Driven Cavity Flow
,”
ASME J. Fluids Eng.
0098-2202,
106
, pp.
385
389
.
6.
Freitas
,
C. J.
,
Street
,
R. L.
,
Findikakis
,
A. N.
, and
Koseff
,
J. R.
, 1994, “
Numerical Simulation of Three-Dimensional Flow in a Cavity
,”
Int. J. Numer. Methods Fluids
0271-2091,
5
, pp.
561
575
.
7.
Koseff
,
J. R.
, and
Street
,
R. L.
, 1984, “
Visualization Studies of a Shear-Driven Three-Dimensional Recirculating Flow
,”
ASME J. Fluids Eng.
0098-2202,
106
, pp.
21
29
.
8.
Chiang
,
T. P.
, and
Sheu
,
W. H.
, 1997, “
Numerical Prediction of Eddy Structure in a Shear-Driven Cavity
,”
Comput. Mech.
0178-7675,
20
, pp.
379
396
.
9.
Drikakis
,
D.
,
Iliev
,
O. P.
, and
Vassileva
,
D. P.
, 1998, “
A Nonlinear Multigrid Method for the Three-Dimensional Incompressible Navier–Stokes Equations
,”
J. Comput. Phys.
0021-9991,
146
(
1
), pp.
301
321
.
10.
Gilmanov
,
A.
, and
Sotiropoulos
,
F.
, 2005, “
A Hybrid Cartesian/Immersed Boundary Method for Simulating Flows With 3d, Geometrically Complex, Moving Bodies
,”
J. Comput. Phys.
0021-9991,
207
(
2
), pp.
457
492
.
11.
Peng
,
Y.
,
Shu
,
C.
, and
Chew
,
Y. T.
, 2004, “
A 3D Incompressible Thermal Lattice Boltzmann Model and its Application to Simulate Natural Convection in a Cubic Cavity
,”
J. Comput. Phys.
0021-9991,
193
(
1
), pp.
260
274
.
12.
Shankar
,
P. N.
, and
Deshpande
,
M. D.
, 2000, “
Fluid Mechanics in the Driven Cavity
,”
Annu. Rev. Fluid Mech.
0066-4189,
32
, pp.
93
136
.
13.
Guermond
,
J. L.
,
Migeon
,
C.
,
Pineau
,
G.
, and
Quartapelle
,
L.
, 2002, “
Start-Up Flows in a Three-Dimensional Rectangular Driven Cavity of Aspect Ratio 1:1:2 at Re=1000
,”
J. Fluid Mech.
0022-1120,
450
, pp.
169
199
.
14.
Prasad
,
K.
, and
Koseff
,
J. R.
, 1989, “
Reynolds Number and End-Wall Effects on a Lid-Driven Cavity Flow
,”
Phys. Fluids A
0899-8213,
1
, pp.
208
218
.
15.
Michelsen
,
J. A.
, 1994, “
Block Structured Multigrid Solution of 2D and 3D Elliptic PDE’s
,” Department of Mechanical Engineering, Technical University of Denmark, Technical Report No. AFM 94-06.
16.
Sørensen
,
N. N.
, 1995, “
General Purpose Flow Solver Applied Over Hills
,” Risø National Laboratory, Technical Report No. RISØ-R-827-(EN).
17.
Sørensen
,
N. N.
, 1995, “
General Purpose Flow Solver Applied Over Hills
,” RISØ National Laboratory, Technical Report No. RISØ R-827-(EN).
18.
Rhie
,
C. M.
, 1981, “
A Numerical Study of the Flow Past an Isolated Airfoil With Separation
,” Ph.D. thesis, University of Illinois, Urbana-Champaign, IL.
19.
Patankar
,
S. V.
, and
Spalding
,
D. B.
, 1972, “
A Calculation Procedure for Heat, Mass and Momentum Transfer in Three-Dimensional Parabolic Flows
,”
Int. J. Heat Mass Transfer
0017-9310,
15
, pp.
1787
1806
.
20.
Arnal
,
M.
,
Lauer
,
O.
,
Lilek
,
Z.
, and
Peric
,
M.
, 1992, “
Prediction of Three-Dimensional Lid Driven Cavity Flow
,”
GAMM Workshop
,
M.
Deville
,
T. H.
Le
, and
Y.
Morchoisne
, eds., pp.
13
24
.
21.
Kost
,
A.
,
Mitra
,
N. K.
,
Fiebig
,
M.
, and
Bochum
,
R. U.
, 1992, “
Numerical Simulation of Three Dimensional Unsteady Flow in a Cavity
,”
GAMM Workshop
,
M.
Deville
,
T. H.
Le
, and
Y.
Morchoisne
, eds., Vol.
36
, pp.
79
80
.
22.
Chong
,
M. S.
,
Soria
,
J.
,
Perry
,
A. E.
,
Chacin
,
J.
,
Cantwell
,
B. J.
, and
Na
,
Y.
, 1998, “
Turbulent Structures of Wall-Bounded Shear Flws Using DNS Data
,”
J. Fluid Mech.
0022-1120,
357
, pp.
225
247
.
23.
Perry
,
A. E.
, and
Chong
,
M. S.
, 1987, “
Description of Eddying Motions and Flow Patterns Using Critical-Point Concepts
,”
Annu. Rev. Fluid Mech.
0066-4189,
19
, pp.
125
155
.
24.
Chiang
,
T. P.
,
Sheu
,
W. H.
, and
Hwang
,
R. R.
, 1997, “
Three-Dimensional Vortex Dynamics in a Shear-Driven Rectangular Cavity
,”
Int. J. Numer. Methods Fluids
0271-2091,
8
, pp.
201
214
.
You do not currently have access to this content.