Abstract

Microscale axial flow fans were investigated in response to the growing cooling requirements of the electronics industry. The two main challenges of this investigation were manufacture of a fully functional fan at the microscale, and performance reduction due to Reynolds number effect. Manufacture of a fully functional axial microfan complete with three-dimensional blade geometry was proven possible using microelectrodischarge machining techniques. Experimental performance measurements proved that Reynolds number effect was not prohibitive at the microscale, and dimensional analysis thereof derived a novel linear scaling method, which quickly and accurately predicted the Reynolds number effect at any fan scale.

1.
Moore
,
G. E.
, 1965, “
Cramming More Components Onto Integrated Circuits
,”
Proc. IEEE
0018-9219,
86
(
1
), pp.
82
85
.
2.
Schaller
,
R. R.
, 1997, “
Moore’s Law: Past, Present, and Future
,”
IEEE Spectrum
0018-9235,
34
(
6
), pp.
52
59
.
3.
Azar
,
K.
, 2000, “
Power Consumption and Generation in the Electronics Industry—A Perspective
,”
Proceedings of the 16th IEEE SEMI-THERM Symposium
, pp.
201
212
.
4.
Moore
,
G. E.
, 2003, “
No Exponential is Forever: But “Forever” Can Be Delayed!
,”
Plenary Session 1 of the 2003 IEEE International Solid-State Circuits Conference
.
5.
Ellsworth
,
M. J.
, 2004, “
Chip Power Density and Module Cooling Technology Projections for the Current Decade
,”
Proceedings of the 2004 Inter Society Conference on Thermal Phenomena
, pp.
707
708
.
6.
Krishnan
,
S.
,
Garimella
,
S. V.
,
Chrysler
,
G. M.
, and
Mahajan
,
R. V.
, 2005, “
Toward a Thermal Moore’s Law
,”
IPACK2005-73409, Proceedings of the ASME InterPACK ’05
,
San Francisco
,
CA.
7.
MIL-HDBK-217F
, 1991,
Military Handbook, Reliability Prediction of Electronic Equipment
,
Department of Defense
,
Washington, D.C.
8.
Paik
,
P.
,
Pamula
,
V. K.
, and
Chakrabarty
,
K.
, 2004, “
Thermal Effects on Droplet Transport in Digital Microfluidics With Applications to Chip Cooling
,”
Proceedings of the IEEE 2004 Inter Society Conference on Thermal Phenomena
, pp.
649
654
.
9.
Reinikainen
,
T.
,
Rantala
,
J.
,
Dalton
,
T.
,
Newport
,
D.
,
Punch
,
J.
, and
Grimes
,
R.
, 2001, “
Thermal Roadmap of Portable Products
,” Nokia Mobile Phones / University of Limerick Research Programme, Stokes Research Institute.
10.
Punch
,
J.
, 2005, private communications.
11.
Bergles
,
A. E.
, 2003, “
Evolution of Cooling Technology for Electrical, Electronic, and Microelectronic Equipment
,”
IEEE Trans. Compon. Packag. Technol.
1521-3331,
26
(
1
), pp.
6
15
.
12.
Gillan
,
P. A.
, 2002, “
Fresh Air—Natural Asset
,”
Proceedings of the INTELEC 24th Annual International Telecommunications Energy Conference 2002
, pp.
470
477
.
13.
Biswas
,
R.
,
Agarwal
,
R. B.
,
Goswami
,
A.
, and
Mansingh
,
V.
, 1999, “
Evaluation of Airflow Prediction Methods in Compact Electronic Enclosures
,”
Proceedings of the 15th IEEE SEMI-THERM Symposium
, pp.
48
53
.
14.
Turner
,
M.
, 1995, “
Fan Considerations in Enclosure Cooling
,”
Electronic Packaging and Production
,
35
, pp.
44
47
.
15.
Wei
,
J.
, and
Suzuki
,
M.
, 2005, “
Thermal Management of Fujitsu High-End Unix Servers
,”
IPACK2005-73313, Proceedings of ASME InterPACK ’05
,
San Francisco
,
CA
.
16.
Fuji Xerox Co. Ltd., 1989, “
Image Reader
,” Patent No. JP1053677.
17.
Fujikura Ltd., IBM, 2004, “
Cooling Device for Electronic Element
,” Patent No. JP2004015024.
18.
Hitachi Ltd., 1994, “
Semiconductor Sealing Package and Cooling Method Thereof
,” Patent No. JP6013512.
19.
Hitachi Ltd., 1995, “
Semiconductor Sealing Package and Cooling Method Thereof
,” Patent No. JP7030026.
20.
IBM, 1994, “
Cooling Microfan Arrangements and Process
,” Patent Nos. US5326430 and US5296775.
21.
Mitsubishi Electric Corp., 1994, “
Integrated Circuit
,” Patent No. JP6177298.
22.
Nippon Keiki, Fujikura Ltd., 1998, “
Cooling System Having Cooling Fan
,” Patent No. JP10197172.
23.
Papst-Motoren GmbH, 2003, “
Miniature Fan or Micro Fan
,” International Publication No. WO 03/058796 A1, International Patent Classification No. H02K 29/08, International File References PCT/EP02/13822.
24.
Samsung, 1999, “
Micro Fan
,” Patent No. CA2276504.
25.
Samsung, 2000, “
Micro Fan
,” Patent No. KR2000006187.
26.
Samsung, 2001, “
Micro Fan
,” Patent No. TW457842B.
27.
Samsung, 2002, “
Micro-Fan
,” Patent No. US2002127113.
28.
Sharp, 1989, “
Air Suction Type Sheet Material Conveying Device
,” Patent No. JP1064937.
29.
Sony Corp., 1996, “
Optical Head Device
,” Patent No. JP8129771.
30.
Sumitomo Metal Industries Ltd., 2001, “
Apparatus for Cooling Electronic Component and Manufacture Thereof
,” Patent No. JP2001015661.
31.
Sunonwealth Electrical Machine Industry Co., 2004, “
Minisize Brushless DC Fan
,” Patent No. CN1523736.
32.
Yongdeji Lighting Electric Co., 2003, “
High Power Compact Energy Saving Lamp With Micro Electric Fan
,” Patent No. CN2580297Y.
33.
Grimes
,
R.
, 2001, “
On Air Flow and Heat Transfer in Fan Cooled Electronic Systems
,” Ph.D. thesis, University of Limerick, Ireland.
34.
Grimes
,
R.
, and
Davies
,
M.
, 2001, “
Aerodynamic and Thermal Investigation Into Axial Flow Fan Cooling of Electronic Systems, Part 1: Measurement Techniques and Steady Flow Measurements
,”
35th National Heat Transfer Conference
.
35.
Spearing
,
M.
, 2001, “
Micropropellers to Keep Your Chips Cool
,” New Scientist, 20 January, Issue No. 2274.
36.
Schlichting
,
H.
, and
Gersten
,
K.
, 2000,
Boundary Layer Theory
, 8th ed.,
Springer-Verlag, Berlin
,
Germany
.
37.
Cumpsty
,
N. A.
, 1989,
Compressor Aerodynamics
Longman Scientific and Technical, Essex
,
England
.
38.
Hill
,
P. G.
, and
Peterson
,
C. R.
, 1992,
Mechanics and Thermodynamics of Propulsion
, 2nd ed.,
Addison-Wesley
,
Wokingham, England
.
39.
Saravanamuttoo
,
H. I. H.
,
Rogers
,
G. F. C.
, and
Cohen
,
H.
, 2001,
Gas Turbine Theory
, 5th ed.,
Pearson Education
,
London, England
.
40.
Ippen
,
A. T.
, 1946, “
The Influence of Viscosity on Centrifugal-Pump Performance
,”
Trans. ASME
0097-6822,
68
, pp.
823
838
.
41.
Davis
,
H.
,
Kottas
,
H.
, and
Moody
,
A. M. G.
, 1950, “
The Influence of Reynolds Number on the Performance of Turbomachinery
,”
Trans. ASME
0097-6822,
73
, pp.
499
509
.
42.
Wallner
,
L. E.
, and
Fleming
,
W. A.
, 1949, “
Reynolds Number Effect on Axial-Flow Compressor Performance
,” NACA Report No. RM E9G11.
43.
Pinnes
,
R. W.
, 1957, “
A Simple Method of Estimating the Reynolds Number Effect on Aircraft Gas-Turbine Engines Operating at High Altitudes
,”
Trans. ASME
0097-6822,
80
6
Paper No. 57—A-157, pp.
1264
1271
. 10.1115/1.4012674
44.
Sievers
,
G. K.
,
Geye
,
R. P.
, and
Lucas
,
J. G.
, 1958, “
Investigation of Reynolds Number Effect on Performance of an Eight-Stage Axial-Flow Research Compressor With Long and Medium-Chord Lengths in the Two Transonic Inlet Stages
,” NACA Report No. RM E57J30.
45.
Smith
,
L. H
, Jr.
, 1964, “
Some Comments on Reynolds Number
,”
ASME J. Eng. Power
0022-0825,
86
, pp.
225
226
.
46.
Quin
,
D.
, 2006, “
Micro Scale Axial Flow Fans
,” Ph.D. thesis, University of Limerick, Ireland.
47.
Sohn
,
R. L.
, 1956, “
An Analysis of the Performance of an Axial-Flow Compressor at Low Reynolds Number
,”
J. Aeronaut. Sci.
0095-9812,
23
, pp.
741
746
.
48.
White
,
F. M.
, 1986,
Fluid Mechanics
2nd ed.,
McGraw-Hill
,
London, England
.
49.
Kunz
,
S.
, 2003, meeting between the SRI and the IMM.
50.
BSi, 1997,
Fans for General Purposes, Part1, Performance Testing Using Standardized Airways
, BS 848, London, England.
51.
Kline
,
S. J.
, and
McClintock
,
F. A.
, 1953, “
Describing Uncertainties in Single-Sample Experiments
,”
Mech. Eng. (Am. Soc. Mech. Eng.)
0025-6501,
75
, pp.
3
8
, cited from Ref. (52).
52.
Holman
,
J. P.
, 1989,
Experimental Methods for Engineers
, 5th ed.,
McGraw-Hill
,
London, England
.
53.
Neustein
,
J.
, 1964, “
Low Reynolds Number Experiments in an Axial Flow Turbomachine
,”
ASME J. Eng. Power
0022-0825,
86
(
3
), pp.
257
295
.
54.
Geye
,
R. P.
, and
Lucas
,
J. G.
, 1957, “
Investigation of Effects of Reynolds Number on Over-All Performance of an Eight-Stage Axial-Flow Research Compressor With Two Transonic Inlet Stages
,” NACA Report No. RM E56L11A.
55.
Heidelberg
,
L. J.
, and
Ball
,
C. L.
, 1972, “
Effect of Reynolds Number on Overall Performance of a 3.7Inch Diameter Six Stage Axial Flow Compressor
,” NASA Report No. TN D6628.
56.
Koch
,
C. C.
, 1981, “
Stalling Pressure Rise Capability of Axial Flow Compressor Stages
,”
ASME J. Eng. Power
0022-0825,
103
, pp.
645
656
.
57.
Schulze
,
W. M.
,
Erwin
,
J. R.
, and
Ashby
,
G. C.
, Jr.
, 1957, “
NACA 65-Series Compressor Rotor Performance With Varying Annulus-Area Ratio, Solidity, Blade Angle, and Reynolds Number and Comparison With Cascade Results
,” NACA Report No. TN 4130 (supersedes NACA Report No. RM L52L17).
58.
Venter
,
S. G.
, and
Kröger
,
D. G.
, 1992, “
The Effect of Tip Clearance on the Performance of an Axial Flow Fan
,”
Energy Convers. Manage.
0196-8904,
33
(
2
), pp.
89
97
.
59.
Bell
,
E. B.
, 1941, “
Test of a Single-Stage Axial-Flow Fan
,” NACA Report No. TR 729.
60.
Dalton
,
T. M.
, and
Davies
,
M. R. D.
, 1997,
Convection Dimensional Analysis
,
University of Limerick
,
Ireland
.
61.
Davies
,
M. R. D.
, and
Dalton
,
T. M.
, 1997,
Teaching Thermofluids Dimensional Analysis
,
University of Limerick
,
Ireland
.
62.
Davies
,
M. R. D.
, and
Dalton
,
T. M.
, 1998, “
A New Approach to Teaching Thermofluids Dimensional Analysis
,”
Int. J. Mech. Eng. Educ.
0306-4190,
28
(
2
), pp.
174
184
.
63.
Massey
,
B.
, and
Smith
,
J. W.
, 1998,
Mechanics of Fluids
, 7th ed.,
Stanley Thornes Ltd.
,
Cheltenham, U.K
.
64.
Epstein
,
A. H.
, 2004, “
Millimetre-Scale, Micro-Electro-Mechanical Systems Gas Turbine Engines
,”
Trans. ASME: J. Eng. Gas Turbines Power
0742-4795,
126
, pp.
205
226
.
65.
Hanly
,
K.
,
Grimes
,
R.
,
Walsh
,
E.
,
Rodgers
,
B.
, and
Punch
,
J.
, 2005, “
The Effect of Reynolds Number on the Aerodynamic Performance of Micro Radial Flow Fans
,”
Proceedings of the 2005 ASME Summer Heat Transfer Conference
,
San Francisco, CA
, Paper No. HT2005-72514.
You do not currently have access to this content.