A new approach to scaling of transitional wall roughness in turbulent flow is introduced by a new nondimensional roughness scale ϕ. This scale gives rise to an inner viscous length scale ϕνuτ, inner wall transitional variable, roughness friction Reynolds number, and roughness Reynolds number. The velocity distribution, just above the roughness level, turns out to be a universal relationship for all kinds of roughness (transitional, fully smooth, and fully rough surfaces), but depends implicitly on roughness scale. The open turbulent boundary layer equations, without any closure model, have been analyzed in the inner wall and outer wake layers, and matching by the Izakson-Millikan-Kolmogorov hypothesis leads to an open functional equation. An alternate open functional equation is obtained from the ratio of two successive derivatives of the basic functional equation of Izakson and Millikan, which admits two functional solutions: the power law velocity profile and the log law velocity profile. The envelope of the skin friction power law gives the log law, as well as the power law index and prefactor as the functions of roughness friction Reynolds number or skin friction coefficient as appropriate. All the results for power law and log law velocity and skin friction distributions, as well as power law constants are explicitly independent of the transitional wall roughness. The universality of these relations is supported very well by extensive experimental data from transitional rough walls for various different types of roughnesses. On the other hand, there are no universal scalings in traditional variables, and different expressions are needed for various types of roughness, such as inflectional roughness, monotonic roughness, and others. To the lowest order, the outer layer flow is governed by the nonlinear turbulent wake equations that match with the power law theory as well as log law theory, in the overlap region. These outer equations are in equilibrium for constant value of m, the pressure gradient parameter, and under constant eddy viscosity closure model, the analytical and numerical solutions are presented.

1.
Nikuradse
,
J.
, 1932, “
Laws of Turbulent Flow in Smooth Pipes
,” VDI, Forschungsheft N-356 (English Translation NACA TTF-10, p.
359
).
2.
Barenblatt
,
G. I.
, 1993, “
Scaling Laws for Fully Developed Turbulent Shear Flows, Part I: Basic Hypothesis and Analysis
,”
J. Fluid Mech.
0022-1120,
248
, pp.
513
520
.
3.
Kailasnath
,
P.
, 1993, “
Reynolds Number Effect and the Momentum Flux in Turbulent Boundary Layer
,” Ph.D. thesis, Yale University, New Haven, CT.
4.
Zagarola
,
M.
,
Perry
,
A. E.
, and
Smits
,
A. J.
, 1997, “
Log Laws or Power Laws: The Scaling in Overlap Region
,”
Phys. Fluids
1070-6631,
9
, pp.
2094
2100
.
5.
McKeon
,
B. J.
,
Li
,
J.
,
Jiang
,
W.
,
Morrison
,
J. F.
, and
Smits
,
A. J.
, 2004, “
Further Observations on Mean Velocity Distribution in Fully Developed Pipe Flow
,”
J. Fluid Mech.
0022-1120,
501
, pp.
135
147
.
6.
Afzal
,
N.
, 2001, “
Power Law and Log Law Velocity Profiles in Fully Developed Turbulent Pipe Flow: Equivalent Relations at Large Reynolds Numbers
,”
Acta Mech.
0001-5970,
151
, pp.
171
183
.
7.
Nikuradse
,
J.
, 1933, “
Laws of Flow in Rough Pipe
,” VDI, Forschungsheft N-361 (English translation NACA TM 1292, 1950).
8.
Porporato
,
A.
, and
Sordo
,
S.
, 2001, “
On the Incomplete Similarity for Turbulent Velocity Profiles in Rough Pipes
,”
Phys. Fluids
1070-6631,
13
(
9
), pp.
2596
2601
.
9.
Afzal
,
N.
,
Seena
,
A.
, and
Bushra
,
A.
, 2006, “
Power Law Turbulent Velocity Profile in Transitional Rough Pipes
,”
J. Fluids Eng.
0098-2202,
128
, pp.
548
558
.
10.
Barenblatt
,
G. I.
,
Chorin
,
A. J.
, and
Prostokishin
,
V. M.
, 2000, “
Self-Similar Intermediate Structures in Turbulent Boundary Layers at Large Reynolds Numbers
,”
J. Fluid Mech.
0022-1120,
410
, pp.
263
283
.
11.
Panton
,
R. L.
, 2002, “
Evaluation of the Barenblatt-Chorin-Prostokishin Power Law for Turbulent Boundary Layers
,”
Phys. Fluids
1070-6631,
14
, pp.
1806
1808
.
12.
Osterlund
,
J. M.
, 1999, “
Experimental Studies of Zero Pressure Gradient Turbulent Boundary Layer
,” Ph.D. thesis, Royal Institute of Technology, Stockholm, Sweden.
13.
Balachandar
,
R.
,
Hagel
,
K.
, and
Blakely
,
D.
, 2002, “
Velocity Distribution in Decelerating Flow Over Rough Surface
,”
Can. J. Civ. Eng.
0315-1468,
29
, pp.
211
221
.
14.
Bergstrom
,
D. J.
,
Tachie
,
M. F.
, and
Balachandar
,
R.
, 2001, “
Application of Power Laws to Low Reynolds Number Boundary Layers on Smooth and Rough Surfaces
,”
Phys. Fluids
1070-6631,
13
(
11
), pp.
3277
3284
.
15.
Kotey
,
N. A.
,
Bergstrom
,
D. J.
, and
Tachie
,
T. F.
, 2003, “
Power Law for Rough Wall Turbulent Boundary Layer
,”
Phys. Fluids
1070-6631,
15
, pp.
1396
1404
.
16.
Seo
,
J.
, and
Castillo
,
L.
, 2004, “
Rough Surface Turbulent Boundary Layer: The Composite Profiles
,” 42nd AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada, Jan. 5–8, Paper No. AIAA 2004–1287.
17.
George
,
W.
, and
Castillo
,
L.
, 1997, “
Zero Pressure Gradient Turbulent Boundary Layer
,”
Appl. Mech. Rev.
0003-6900,
50
, pp.
689
729
.
18.
Afzal
,
N.
, 2005, “
Scaling of Power Law Velocity Profile in Wall-Bounded Turbulent Shear Flows
,” 43rd AIAA Aerospace Sciences Meeting and Exhibit, 10–13 Jan Reno, Nevada, Jan. 10–13, Paper No. AIAA-2005-0109.
19.
Flack
,
K. A.
,
Schultz
,
M. P.
, and
Shapiro
,
T. A.
, 2005, “
Experimental Support for Townsend’s Reynolds Number Similarity Hypothesis on Rough Walls
,”
Phys. Fluids
1070-6631,
17
, p.
035102
.
20.
George
,
W.
,
Castillo
,
L.
, and
Knecht
,
P.
, 1996, “
The Zero Pressure Gradient Turbulent Boundary Layer
,” Turbulence Research Lab., State University of New York at Buffalo, Technical Report TRL-153.
21.
George
,
W.
,
Abrahamsson
,
H.
,
Eriksson
,
J.
,
Karlsson
,
R. L.
,
Lofdahl
,
L.
, and
Wosnik
,
M.
, 2000, “
A Similarity Theory for the Turbulent Plane Wall Jet Without External Stream
,”
J. Fluid Mech.
0022-1120,
425
, pp.
367
411
.
22.
George
,
W.
, 2005, “
Recent Advancements Towards Understanding of Turbulent Boundary Layer
,” 4th AIAA, Theoretical Fluid Mechanics, Toronto, Canada, June 6–9, 2005, Paper No. AIAA-2005-4669, pp.
1
18
.
23.
Eaton
,
J. K.
, and
Nagib
,
H. M.
, 2004, “
Report: ‘Second International Workshop on Wall-Bounded Turbulent Flows’ by H. Nagib & A. J. Smits
,” Trieste, Italy, Nov. 2–5, 2004.
24.
Afzal
,
N.
, 1997, “
Power Law in Wall and Wake Layers of a Turbulent Boundary Layer
,”
Proc. Seventh Asian Congress of Fluid Mechanics
,
Allied Publishers
, New Delhi, India, pp.
805
808
.
25.
Afzal
,
N.
, 2001, “
Power Law and Log Law Velocity Profiles in Turbulent Boundary Layer Flow: Equivalent Relations at Large Reynolds Numbers
,”
Acta Mech.
0001-5970,
151
, pp.
195
216
.
26.
Afzal
,
N.
, 2005, “
Analysis of Power Law and Log Law Velocity Profiles in Overlap Region of a Turbulent Wall Jet
,”
Proc. R. Soc. London, Ser. A
1364-5021,
461
, pp.
1889
1910
.
27.
Millikan
,
C. B.
, 1938, “
A Critical Discussion of Turbulent Flows in Channels and Circular Tubes
,”
Proc. 5th International Congress on Applied Mechanics
J. P.
den Hartog
and
H.
Peters
, eds., Cambridge, MA,
Wiley/Chapman and Hall
, New York, pp.
386
392
.
28.
Clauser
,
F. H.
, 1954, “
Turbulent Boundary Layers in Adverse Pressure Gradients
,”
J. Aeronaut. Sci.
0095-9812,
21
, pp.
91
108
.
29.
Hama
,
F. R.
, 1954, “
Boundary Layer Characteristics for Smooth and Rough Surface
,”
Soc. Nav. Archit. Mar. Eng., Trans.
0081-1661,
62
, pp.
333
358
.
30.
Schlichting
,
H.
, 1968,
Boundary Layer Theory
,
Mc-Graw Hill
, New York.
31.
Raupach
,
M. R.
,
Antonia
,
R. A.
, and
Rajagopalan
,
S.
, 1991, “
Rough-Wall Turbulent Boundary Layer
,”
Adv. Appl. Mech.
0065-2156,
44
, pp.
1
25
.
32.
Jimenez
,
J.
, 2004, “
Turbulent Flow Over Rough Walls
,”
Annu. Rev. Fluid Mech.
0066-4189,
36
, pp.
173
196
.
33.
Izakson
,
A. A.
, 1937, “
On Formula for the Velocity Distribution Near Walls
,”
Sov. Phys. Tech. Phys.
0038-5662,
4
, pp.
155
159
.
34.
Kolmogorov
,
A. N.
, 1941, “
The Local Structure of Turbulence in Incompressible Viscous Fluid for Very Large Reynolds Numbers
,”
Dokl. Akad. Nauk SSSR
0002-3264,
30
,
9
13
(reprinted in Proc. R. Soc. London A 434, 9–13 (1991).
35.
Afzal
,
N.
, and
Narasimha
,
R.
, 1976, “
Axisymmetric Turbulent Boundary Layers Along a Circular Cylinder With Constant Pressure
,”
J. Fluid Mech.
0022-1120,
74
, pp.
113
129
.
36.
Afzal
,
N.
, 1976, “
Millikan Argument at Moderately Large Reynolds Numbers
,”
Phys. Fluids
0031-9171,
19
, pp.
600
602
.
37.
Afzal
,
N.
, and
Bush
,
W. B.
, 1985, “
A Three Layer Asymptotic Analysis of Turbulent Channel Flows
,”
Proc. Indian Acad. Sci., Math. Sci.
0253-4142,
94
, pp.
135
148
.
38.
Afzal
,
N.
, 1996, “
Wake Layer in a Turbulent Boundary Layer With Pressure Gradient: A New Approach
,”
Proc. IUTAM Symposium. on: Asymptotic Methods for Turbulent Shear Flows at High Reynolds Numbers
,
K.
Gersten
, ed.,
Kluwer Academic Publisher
, Dordrecht, pp.
95
118
.
39.
Narasimha
,
R.
, 1996, “
Different Approaches to Asymptotic Expansions of Turbulent Boundary Layer
,”
Asymptotic Methods for Turbulent Shear Flows at High Reynolds Numbers
,
K.
Gersten
, ed.,
Kluwer Academic Publisher
, Dordrecht, pp.
5
16
.
40.
Buschmann
,
M. H.
, and
Gad-el-Hak
,
K.
, 2003, “
Generalized Logarithmic Law and its Consequences
,”
AIAA J.
0001-1452,
41
, pp.
40
48
.
41.
Coles
,
D.
, 1968, “
Young Person’s Guide to the Data
,”
Proc. Comp. Turbulent Boundary Layer 1968 AFOSR- IFP-Stanford Conference
, Vol.
2
,
D.
Coles
, and
E. A.
Hirst
, eds., pp.
1
45
.
42.
Lewkowicz
,
A. K.
, 1982, “
An Improved Universal Wake Function for Turbulent Boundary Layers and Some of its Consequences
,”
Z. Flugwiss. Weltraumforsch.
0342-068X,
6
, pp.
261
266
.
43.
Finley
,
P. J.
,
Khoo
,
C. P.
, and
Chin
,
J. P.
, 1966, “
Velocity Measurements in a Thin Turbulent Wake Layer
,”
Houille Blanche
0018-6368,
21
, pp.
713
721
.
44.
Granville
,
P. S.
, 1976, “
A Modified Law of the Wake for Turbulent Shear Flows
,”
J. Fluids Eng.
0098-2202,
198
, pp.
578
580
.
45.
Kameda
,
T.
,
Osaka
,
H.
, and
Mochizuki
,
S.
, 1998, “
Mean Flow Quantities for the Turbulent Boundary Layer Over a k-type Rough Wall
,” 13th Adust. Fluid Mech. Conf., Monash University, Melbourne, pp.
357
360
.
46.
Osaka
,
H.
, and
Mochizuki
,
S.
, 1991, “
On Turbulence Structure of the Boundary Layer on d-type Rough Wall
,” in
Experimental Heat Transfer, Fluid Mechanics and Thermodynamics
, Keffler, Shah and Ganic, eds.,
Elsevier Science Pub. Co., Inc.
, New York, pp.
412
422
.
47.
Antonia
,
R. A.
, and
Krogstad
,
P. A.
, 2001, “
Turbulence Structure in Boundary Layer Over Different Types of Surface Roughness
,”
Fluid Dyn. Res.
0169-5983,
28
, pp.
139
157
.
48.
Smalley
,
R. J.
,
Antonia
,
R. A.
, and
Djenidi
,
L.
, 2001, “
Self Preservation of Rough-Wall Turbulent Boundary Layers
,”
Eur. J. Mech. B/Fluids
0997-7546,
20
, pp.
591
602
.
49.
Schultz
,
M. P.
, and
Flack
,
K. A.
, 2003, “
Turbulent Boundary Layers Over Surfaces Smoothed by Sanding
,”
J. Fluids Eng.
0098-2202,
125
, pp.
863
870
.
50.
Schultz
,
M. P.
, and
Myers
,
A.
, 2003, “
Comparison of Three Roughness Function Determination Methods
,”
Exp. Fluids
0723-4864,
35
(
4
), pp.
372
379
.
51.
Schultz
,
M. P.
, and
Flack
,
K. A.
, 2005, “
Outer Layer Similarity in Fully Rough Wall Turbulent Boundary Layers
,”
Exp. Fluids
0723-4864,
38
, pp.
328
340
.
52.
Rahman
,
S.
, and
Webster
,
D. R.
, 2005, “
The Effects of Bed Roughness on the Scaler Fluctuations of Turbulent Boundary Layer
,”
Exp. Fluids
0723-4864,
38
, pp.
372
384
.
53.
Afzal
,
N.
, 2006, “
Turbulent Boundary Layers on Transitional Rough Surfaces: New Approach to Universal Scaling
,”
36th AIAA Fluid Dynamics Conference and Exhibit
, June 5–8, San Francisco, CA, Paper No. AIAA-2006-2886.
54.
Leonardi
,
S.
,
Orlandi
,
P.
,
Smalley
,
R. J.
,
Djenidi
,
L.
, and
Antonia
,
R. A.
, 2003, “
Direct Numerical Simulations of Turbulent Channel Flow With Transverse Square Bars on One Wall
,”
J. Fluid Mech.
0022-1120,
491
, pp.
229
238
.
55.
Poggi
,
D.
,
Porporato
,
A.
, and
Ridolfi
,
L.
, 2003, “
Analysis of Small Scale Structure of Turbulence on Smooth and Rough Walls
,”
Phys. Fluids
1070-6631,
15
(
1
), pp.
35
46
.
56.
Clauser
,
F. H.
, 1956, “
The Turbulent Boundary Layer
,”
Advances in Applied Mechanics
,
Academic Press
, New York, Vol.
4
, pp.
2
52
.
57.
Buschmann
,
M. H.
, and
Gad-el-Hak
,
K.
, 2003, “
The Debate Concerning the Mean Velocity Profile of a Turbulent Boundary Layer
,”
AIAA J.
0001-1452,
41
, pp.
565
572
.
58.
Connelly
,
J. S.
,
Schultz
,
M. P.
, and
Flack
,
K. A.
, 2006, “
Velocity-Defect Scaling for Turbulent Boundary Layers With a Range of Relative Roughness
,”
Exp. Fluids
0723-4864,
40
, pp.
188
195
.
59.
Afzal
,
N.
, 1983, “
Analysis of a Turbulent Boundary Layer Subjected to a Strong Adverse Pressure Gradient
,”
Int. J. Eng. Sci.
0020-7225,
21
, pp.
563
576
.
60.
Coles
,
D.
, 1956, “
The Law of the Wake in the Turbulent Boundary Layer
,”
J. Fluid Mech.
0022-1120,
1
, pp.
191
226
.
61.
Elsberry
,
K.
,
Loefffler
,
J.
,
Zhou
,
M. D.
, and
Wygnanssi
,
I.
, 2000, “
Experimental Study of a Boundary Layer That is Maintained on the Verge of Separation
,”
J. Fluid Mech.
0022-1120,
423
, pp.
227
281
.
62.
Angele
,
K. P.
, and
Klingmann
,
M. B.
, 2006, “
PIV Measurements in a Weakly Separating and Reattaching Turbulent Boundary Layer
,”
Eur. J. Mech. B/Fluids
0997-7546,
25
(
2
),
209
222
.
63.
Piquet
,
J.
, 1999,
Turbulent Flow
,
Springer-Verlag
, Berlin.
64.
Colebrook
,
C. F.
, 1939, “
Turbulent Flow in Pipes With Particular Reference to the Transition Region Between the Smooth and Rough Pipe Laws
,”
J. Inst. Civ. Eng.
,
11
, pp.
133
156
.
65.
Grigson
,
C.
, 1992, “
Drag Losses of New Ships Caused by Hull Finish
,”
J. Ship Res.
0022-4502,
36
, pp.
182
196
.
66.
Cebeci
,
T.
, 2004,
Analysis of Turbulent Flows
,
Elsevier
, New York.
67.
Shockling
,
M. A.
,
Allen
,
J. J.
, and
Smits
,
A. J.
, 2006, “
Roughness Effects in Turbulent Pipe Flow
,”
J. Fluid Mech.
0022-1120,
564
, pp.
267
285
.
68.
Afzal
,
N.
, and
Seena
,
A.
, 2007, “
Alternate Scales for Turbulent Flow in Transitional Rough Pipes: Universal Log Laws
,”
J. Fluids Eng.
0098-2202,
129
, pp.
80
90
.
69.
Afzal
,
N.
,
Bushra
,
A.
, and
Seena
,
A.
, 2006, “
Effects of Machined Surface Roughness on High Reynolds Number Turbulent Pipe Flow: New Approach to Scaling
,”
Proc. of the Eleventh Asian Congress of Fluid Mechanics (on disk)
,
Institution of Engineers
, Malaysia, May 22–25, pp.
542
547
.
70.
Allen
,
J. J.
,
Shockling
,
M. A.
, and
Smits
,
A. J.
, 2005, “
Evaluation of a Universal Transitional Resistance Diagram for Pipes With Honed Surfaces
,”
Phys. Fluids
1070-6631,
17
, p.
121702
.
You do not currently have access to this content.