This work assesses the performance of two single-equation eddy viscosity transport models that are based on Menter’s transformation of the k-ε and the k-ω closures. The coefficients of both models are set exactly the same and follow directly from the constants of the standard k-ε closure. This in turn allows a cross-comparison of the effect of two different destruction terms on the performance of single-equation closures. Furthermore, some wall-free modifications to production and destruction terms are proposed and applied to both models. An assessment of the baseline models with and without the proposed modifications against experiments, and the Spalart-Allmaras turbulence model is provided via several boundary-layer computations. Better performance is indicated with the proposed modifications in wall-bounded nonequilibrium flows.

1.
Cebeci
,
T.
, and
Smith
,
A. M. O.
, 1974,
Analysis of Turbulent Boundary Layers
,
Academic Press
, New York, pp.
215
217
.
2.
Baldwin
,
B. S.
, and
Lomax
,
H.
, 1978, “
Thin-Layer Approximation and Algebraic Model for Separated Turbulent Flows
,” AIAA Paper No. 78-257.
3.
Abid
,
R.
,
Rumsey
,
C.
, and
Gatski
,
T. B.
, 1995, “
Prediction of Nonequilibrium Turbulent Flows With Explicit Algebraic Stress Models
,”
AIAA J.
0001-1452,
33
, pp.
2026
2031
.
4.
Speziale
,
C. G.
, 1987, “
On Nonlinear k‐l and k-ε Models of Turbulence
,”
J. Fluid Mech.
0022-1120,
178
, p.
459
.
5.
Rubinstein
,
R.
, and
Barton
,
J. M.
, 1990, “
Nonlinear Reynolds Stress Models and the Normalization Group
,”
Phys. Fluids A
0899-8213,
2
, p.
1472
.
6.
Gatski
,
T. B.
, and
Speziale
,
C. G.
, 1993, “
On Explicit Algebraic Stress Models for Complex Turbulent Flows
,”
J. Fluids Eng.
0098-2202,
254
, pp.
59
78
.
7.
Goldberg
,
U.
, 2000, “
Hypersonic Flow Heat Transfer Prediction Using Single Equation Turbulence Models
,”
ASME J. Heat Transfer
0022-1481,
123
, pp.
65
69
.
8.
Goldberg
,
U.
, 2003, “
Turbulence Closure With a Topography-Parameter-Free Single Equation Model
,”
Int. J. Comput. Fluid Dyn.
1061-8562,
17
, pp.
27
38
.
9.
Menter
,
F. R.
, 1997, “
Eddy Viscosity Transport Equations and Their Relation to the k−ε Model
,”
ASME J. Fluids Eng.
0098-2202,
119
, pp.
876
884
.
10.
Nagano
,
C.
,
Pei
,
C.
, and
Hattori
,
H.
, 2000, “
A New Low-Reynolds-Number One-Equation Model of Turbulence
,”
Flow, Turbul. Combust.
1386-6184,
63
, pp.
135
151
.
11.
Baldwin
,
B.
, and
Barth
,
T.
, 1990, “
A One-Equation Turbulent Transport Model for High Reynolds Number Wall-Bounded Flows
,” NASA TM-102847.
12.
Kral
,
L. D.
, 1998, “
Recent Experience With Different Turbulence Models Applied to the Calculation of Flow Over Aircraft Components
,”
Prog. Aerosp. Sci.
0376-0421,
34
, pp.
481
541
.
13.
Sai
,
V. A.
, and
Lutfy
,
F. M.
, 1995, “
Analysis of the Baldwin-Barth and Spalart-Allmaras One-Equation Turbulence Models
,”
AIAA J.
0001-1452,
33
, pp.
1971
1974
.
14.
Wilcox
,
D. C.
, 2000,
Turbulence Modeling for CFD
, Second ed.,
DCW Industries Inc.
, La Cacada, CA.
15.
Spalart
,
P.
, and
Allmaras
,
S.
, 1992, “
A One-Equation Turbulence Model for Aerodynamic Flows
,” AIAA Paper No. 92-0439.
16.
Michelassi
,
V.
, and
Shihi
,
T.-H.
, 1991, “
Elliptic Flow Computation by Low Reynolds Number Two-Equation Turbulence Models
,” NASA TM-105376, CMOTT-91-11.
17.
Wilcox
,
D. C.
, 1993, “
Comparison of Two-Equation Turbulence Models for Boundary Layers With Pressure Gradient
,”
AIAA J.
0001-1452,
31
(
8
), pp.
1414
1421
.
18.
Ekaterinaris
,
J. A.
,
Cricelli
,
A.
, and
Platzer
,
M. F.
, 1994, “
A Zonal Method for Unsteady Viscous, Compressible Airfoil Flows
,”
J. Fluids Struct.
0889-9746,
8
, pp.
107
123
.
19.
Rai
,
M. M.
, and
Chakravarthy
,
S. R.
, 1986, “
An Implicit Form of the Osher Upwind Scheme
,”
AIAA J.
0001-1452,
24
, pp.
735
743
.
20.
Schlichting
,
H.
, 1979,
Boundary Layer Theory
,
McGraw-Hill
, New York.
21.
Coles
,
D.
, and
Wadcock
,
A. J.
, 1979, “
Flying Hot Wire Study of Flow Past an NACA 4412 Airfoil at Maximum Lift
,”
AIAA J.
0001-1452,
17
, pp.
321
328
.
22.
Harris
,
C.
, 1981, “
Two-Dimensional Aerodynamic Characteristics of the NASA 0012 Airfoil in the Langley 8-Foot Transonic Pressure Tunnel
,” NASA TM-81927.
23.
Cook
,
P. H.
,
McDonald
,
M. A.
, and
Firmin
,
M. C. P.
, 1979, “
AIRFOIL RAE 2822 Pressure Distributions, Boundary Layer and Wake Measurements
,” AGARD Advisory Report No. 138.
24.
Mellen
,
C. P.
,
Froölich
,
J.
, and
Rodi
,
W.
, 2002, “
Lessons From the European LESFOIL Project on LES of Flow Around an Airfoil
”, AIAA Paper No. 2002-0111.
25.
Kotapati-Apparao
,
R.
,
Squires
,
K. D.
, and
Forsythe
,
J. R.
, 2004, “
Prediction of the Flow Over an Airfoil at Maximum Lift
,” AIAA Paper No. 2004-0259.
26.
Ruck
,
B.
, and
Makiola
,
B.
, 1993, “
Flow Separation Over the Step With Inclined Walls
,”
Near-Wall Turbulent Flows, Proceedings of the International Conference
,
R. M. C.
So
,
C. G.
Speziale
, and
B. E.
Launder
, eds., Tempe, AZ, March 15–17, 1993,
Elsevier
, Amsterdam, p.
999
.
You do not currently have access to this content.