Abstract

An experimentally validated computer simulation model has been developed for the analysis of gas-phase and droplet characteristics of isothermal sprays generated by pressure jet atomizers. Employing a coupled Euler-Lagrange approach for the gas-droplet flow, secondary droplet breakup (based on the ETAB model), was assumed to be dominant and the k-ε model was selected for simulating the gas flow. Specifically, transient spray formation in terms of turbulent gas flow as well as droplet velocities and size distributions are provided for different back pressures. Clearly, two-way coupling of the phases is important because of the impact of significant gas entrainment, droplet momentum transfer, and turbulent dispersion. Several spray phenomena are discussed in light of low back-pressure (1atm) and high back-pressure (30atm) environments. At low back-pressure, sprays have long thin geometric features and penetrate faster and deeper than at high back-pressures because of the measurable change in air density and hence drag force. Away from the nozzle exit under relatively high back pressures, there is no distinct droplet size difference between peripheral and core regions because of the high droplet Weber numbers, leading to very small droplets which move randomly. In contrast to transient spray developments, under steady-state conditions droplets are subject to smaller drag forces due to the fully-developed gas entrainment velocities which reduce gas-liquid slip. Turbulent dispersion influences droplet trajectories significantly because of the impact of random gas-phase fluctuations.

References

1.
Sirignano
,
W. A.
, 1999,
Fluid Dynamics and Transport of Droplets and Sprays
,
Cambridge University Press
, Cambridge, UK.
2.
Archambault
,
A.
,
Edwards
,
C. F.
, and
MacCormack
,
R. W.
, 2003, “
Computation of Spray Dynamics by Moment Transport Equations I: Theory and Development
,”
Atomization Sprays
1044-5110,
13
, pp.
63
87
.
3.
Faeth
,
G. M.
,
Hsiang
,
L. P.
, and
Wu
,
P. K.
, 1995, “
Structure and Breakup Properties of Sprays
,”
Int. J. Multiphase Flow
0301-9322,
21
(
Suppl
), pp.
99
127
.
4.
Wu
,
P. K.
,
Miranda
,
R. F.
, and
Faeth
,
G. M.
, 1995, “
Effects of Initial Flow Conditions on Primary Breakup of Nonturbulent and Turbulent Round Liquid Jets
,”
Atomization Sprays
1044-5110,
5
, pp.
175
196
.
5.
Mazallon
,
J.
,
Dai
,
Z.
, and
Faeth
,
G. M.
, 1999, “
Primary Breakup of Nonturbulent Round Liquid Jets in Gas Crossflows
,”
Atomization Sprays
1044-5110,
9
, pp.
291
311
.
6.
Herrmann
,
M.
, 2003, “
Modeling Primary Breakup: A Three-Dimensional Eulerian Level Set/Vortex Sheet Method for Two-Phase Interface Dynamics
,” Center for Turbulence Research, Annual Research Briefs, pp.
185
196
.
7.
Yi
,
Y.
, and
Reitz
,
R. D.
, 2005, “
Modeling the Primary Breakup of High-Speed Jets
,”
Atomization Sprays
1044-5110,
14
, pp.
53
79
.
8.
Liu, B, Mather
,
D.
, and
Reitz
,
R. D.
, 1993, “
Effects of Drop Drag and Breakup on Fuel Sprays
,” SAE Technical Paper No. 930072.
9.
Reitz
,
R. D.
, and
Diwakar
,
R.
, 1986, “
Effect of Droplet Breakup on Fuel Sprays
,” SAE Technical Paper No. 860469.
10.
Dukowicz
,
J. K.
, 1980, “
A Particle-Fluid Numerical Model for Liquid Sprays
,”
J. Comput. Phys.
0021-9991,
35
, pp.
229
253
.
11.
Burger
,
M.
,
Klose
,
G.
,
Rottenkolber
,
G.
,
Schmehl
,
R.
,
Giebert
,
D.
,
Schafer
,
O.
,
Koch
,
R.
, and
Wittig
,
S.
, 2002, “
A Combined Eulerian and Lagrangian Method for Prediction of Evaporating Sprays
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
124
, pp.
481
488
.
12.
Iyer
,
V.
, and
Abraham
,
J.
, 2003, “
An Evaluation of a Two-Fluid Eulerian-Liquid Eulerian-Gas Model for Diesel Sprays
,”
ASME J. Fluids Eng.
0098-2202,
125
, pp.
660
669
.
13.
Reitz
,
R. D.
, and
Diwakar
,
R.
, 1987, “
Structure of High-Pressure Fuel Sprays
,” SAE Technical Paper No. 870598.
14.
Reitz
,
R. D.
, 1987, “
Modeling Atomization Processes in High-Pressure Vaporizing Sprays
,”
Atomization and Spray Technology
,
3
, pp.
309
337
.
15.
O’Rourke
,
P. J.
, and
Amsden
,
A. A.
, 1987, “
The Tab Method for Numerical Calculation of Spray Droplet Breakup
,” SAE Technical Paper Series No. 872089.
16.
Tanner
,
F. X.
, 1997, “
Liquid Jet Atomization and Droplet Breakup Modeling of Nonevaporating Diesel Fuel Sprays
,” SAE Technical Paper Series No. 970050.
17.
Shang
,
H. M.
,
Kim
,
Y. M.
,
Chen
,
C. P.
, and
Wang
,
T. S.
, 1994, “
Numerical Studies of Droplet-Turbulence Interactions
,”
Appl. Math. Comput.
0096-3003,
65
, pp.
63
78
.
18.
Madabhushi
,
R. K.
, 2003, “
A Model for Numerical Simulation of Breakup of Liquid Jet in Crossflow
,”
Atomization Sprays
1044-5110,
13
, pp.
413
424
.
19.
Beale
,
J. C.
, and
Reitz
,
R. D.
, 1999, “
Modeling Spray Atomization With the Kelvin-Helmholtz/Rayleigh-Taylor Hybrid Model
,”
Atomization Sprays
1044-5110,
9
, pp.
623
650
.
20.
Su
,
T. F.
,
Patterson
,
M. A.
,
Reitz
,
R. D.
, and
Farrell
,
P. V.
, 1996, “
Experimental and Numerical Studies of High Pressure Multiple-Injection Sprays
,” SAE Technical Paper Series No. 960861.
21.
Lee
,
C. S.
, and
Park
,
S. W.
, 2002, “
An Experimental and Numerical Study on Fuel Atomization Characteristics of High-Pressure Diesel Injection Sprays
,”
Fuel
0016-2361,
81
(
18
), pp.
2417
2423
.
22.
Park
,
S. W.
, and
Lee.
,
C. S.
, 2004, “
Investigation of Atomization and Evaporation Characteristics of High-Pressure Injection Diesel Spray Using Kelvin-Helmholz Instability/Droplet Deformation and Break-Up Competition Model
,”
Proc. Inst. Mech. Eng., Part D (J. Automob. Eng.)
0954-4070,
218
, pp.
767
777
.
23.
Ibrahim
,
E. A.
,
Yang
,
H. Q.
, and
Przekwas
,
A. J.
, 1993, “
Modeling of Spray Droplets Deformation and Breakup
,”
J. Propul. Power
0748-4658,
9
, pp.
651
654
.
24.
Gorokhovski
,
M. A.
, 2001, “
The Stochastic Lagrangian Model of Drops Breakup in the Computation of Liquid Sprays
,”
Atomization Sprays
1044-5110,
11
, pp.
505
520
.
25.
Gorokhovski
,
M. A.
, and
Saveliev
,
V. L.
, 2003, “
Analyses of Kolmogorov’s Model of Breakup and its Application into Lagrangian Computation of Liquid Sprays Under Air-Blast Atomization
,”
Phys. Fluids
1070-6631,
15
, pp.
184
192
.
26.
Apte
,
S. V.
,
Gorokhovski
,
M.
, and
Moin
,
P.
, 2003, “
LES of Atomizing Spray With Stochastic Modeling of Secondary Breakup
,”
Int. J. Multiphase Flow
0301-9322,
29
, pp.
1503
1522
.
27.
Kolmogorov
,
A. N.
, 1941, “
On the Log-Normal Distribution of Particles Sizes During Breakup Process
,”
Dokl. Akad. Nauk SSSR
0002-3264,
2
, pp.
99
101
.
28.
Kleinstreuer
,
C.
, 2003,
Two-Phase Flow: Theory and Applications
,
Tayler & Francis
, NY.
29.
Clift
,
R.
,
Grace
,
J. R.
, and
Weber
,
M. E.
, 1978,
Bubble, Drops and Particles
,
Academic Press
, NY.
30.
Gosman
,
A. D.
, and
Ioannides
,
E.
, 1983, “
Aspects of Computer Simulation of Liquid-Fueled Combustors
,”
J. Energy
0146-0412,
7
, pp.
482
490
.
31.
Ansys Inc.
, 2004, CFX 10 Solver Theory. 168-169 Ansys Inc., Canonsburg, PA.
32.
Hiroyasu
,
H.
, and
Kadota
,
T.
, 1974, “
Fuel Droplet Size Distribution in Diesel Combustion Chamber
,” SAE Paper No. 740715.
33.
Wu
,
K. J.
,
Santavicca
,
D. A.
, and
Bracco
,
F. V.
, 1984, “
LDV Measurements of Drop Velocity in Diesel-Type Sprays
,”
AIAA J.
0001-1452,
22
(
9
), pp.
1263
1270
.
34.
Wu
,
K. J.
,
Reitz
,
R. D.
, and
Bracco
,
F. V.
, 1986, “
Measurements of Droplet Size at the Spray Edge Near the Nozzle in Atomizing Liquid Jets
,”
Phys. Fluids
0031-9171,
29
, pp.
941
951
.
35.
Labs
,
J.
, and
Parker
,
T.
, 2003, “
Diesel Fuel Spray Droplet Sizes and Volume Fractions From the Region 25mm Below the Orifice
,”
Atomization Sprays
1044-5110,
13
, pp.
425
442
.
36.
Kosaka
,
H.
,
Suzuki
,
T.
, and
Kamimoto
,
T.
, 1995, “
Numerical Simulation of Turbulent Dispersion of Fuel Droplets in an Unsteady Spray Via Discrete Vortex Method
,” SAE Technical Paper No. 952433.
37.
Hsiang
,
L. P.
, and
Faeth
,
G. M.
, 1993, “
Drop Properties After Secondary Breakup
,”
Int. J. Multiphase Flow
0301-9322,
19
, pp.
721
735
.
38.
Cheng
,
Y. S.
,
Holmes
,
T. D.
,
Gao
,
J.
,
Guilmette
,
R. A.
,
Li
,
S.
,
Surakitbanharn
,
Y.
, and
Rowlings
,
C.
, 2001, “
Characterization of Nasal Spray Pumps and Deposition Pattern in a Replica of the Human Nasal Airway
,”
Journal of Aerosol Medicine: Deposition, Clearance, and Effects in the Lung
,
14
(
2
), pp.
267
280
.
You do not currently have access to this content.