Abstract

A general procedure to extend turbulence models to account for wall roughness, in the framework of the equivalent sand grain approach, is proposed. It is based on the prescription of the turbulent quantities at the wall to reproduce the shift of the logarithmic profile and hence provide the right increase in wall friction. This approach was previously applied to Spalart and Allmaras one equation (1992, “A One-Equation Turbulence Model for Aerodynamic. Flows,” 30th Aerospace Sciences Meeting and Exhibit, Reno, NV, AIAA paper No. 92-0439;1994, ibid, Rech. Aerosp. 1, pp. 5–21). Here, the strategy is detailed and applied to Smith’s two-equation k-L model (1995, “Prediction of Hypersonic Shock Wave Turbulent Boundary Layer Interactions With The k-l Two Equaton Turbulence Model,” 33rd Aerospace Sciences Meeting and Exhibit, Reno, NV, Paper No. 95-0232). The final model form is given. The so-modified Spalart and Allmaras and Smith models were tested on a large variety of test cases, covering a wide range of roughness and boundary layer Reynolds numbers and compared with other models. These tests confirm the validity of the approach to extend any turbulence model to account for wall roughness. They also point out the deficiency of some models to cope with small roughness levels as well as the drawbacks of present correlations to estimate the equivalent sand grain roughness.

1.
Nikuradse
,
J.
, 1933, “
Strömungsgesetze in rauhen Rohren
,” VDI-Forschungsheft, Technical Report, No. 361.
2.
Patel
,
V. C.
, 1988, “
Perspective: Flow at High Reynolds Number and Over Rough Surfaces—Achilles Heel of CFD
,”
ASME J. Fluids Eng.
0098-2202,
120
, pp.
434
444
.
3.
Reijasse
,
P.
,
Oswald
,
J.
,
Aupoix
,
B.
, and
Steinfeld
,
P.
, 1998, “
Expert Evaluation of Ariane 502 Roll Causes
,”
Third European Symposium on Aerothermodynamics for Space Vehicles, Noordwijk
, The
Netherlands
.
4.
Coleman
,
H. W.
,
Hodge
,
B. K.
, and
Taylor
,
R. P.
, 1983, “
Generalized Roughness Effects on Turbulent Boundary Layer Heat Transfer—A Discrete Element Predictive Approach for Turbulent Flow over Rough Surfaces
,” Air Force Armament Laboratory, Mississippi State University, Report No. AFATL-TR-83-90.
5.
Aupoix
,
B.
, 1994, “
Modelling of Boundary Layers Over Rough Surfaces
,”
Advances in Turbulence V
,
R.
Benzi
, ed.,
Kluwer Academic Press
,
Sienna
, pp.
16
20
.
6.
Schlichting
,
H.
, 1936, “
Experimentelle Untersuchungen zum Rauhigkeitsproblem
,”
Ing.-Arch.
0020-1154,
7
(
1
), pp.
1
34
.
7.
Dirling
,
R. B.
, Jr.
, 1973, “
A Method for Computing Rough Wall Heat Transfer Rates on Reentry Nosetips
,”
AIAA Eigth Thermophysics Conference
,
Palm Springs, CA
AIAA Paper No. 73–763.
8.
Grabow
,
R. M.
, and
White
,
C. O.
, 1975, “
Surface Roughness Effects on Nosetip Ablation Characteristics
,”
AIAA J.
0001-1452,
13
(
5
), pp.
605
609
.
9.
van Driest
,
E. R.
, 1956, “
On Turbulent Flow Near a Wall
,”
J. Aeronaut. Sci.
0095-9812,
23
(
11
), pp.
1007
1011
.
10.
Krogstad
,
P. Å.
, 1991, “
Modification of the van Driest Damping Function to Include the Effects of Surface Roughness
,”
AIAA J.
0001-1452,
29
(
6
), pp.
888
894
.
11.
Chen
,
H. C.
, and
Patel
,
V. C.
, 1988, “
Near-Wall Turbulence Models for Complex Flows Including Separation
,”
AIAA J.
0001-1452,
26
(
6
), pp.
641
648
.
12.
Durbin
,
P. A.
,
Medic
,
G.
,
Seo
,
J. M.
,
Eaton
,
J. K.
, and
Song
,
S.
, 2001, “
Rough Wall Modification of Two-Layer k-ε
,”
ASME J. Fluids Eng.
0098-2202,
123
, pp.
16
21
.
13.
Wilcox
,
D. C.
, 1988, “
Reassessment of the Scale-Determining Equation for Advanced Turbulence Models
,”
AIAA J.
0001-1452,
26
(
11
), pp.
1299
1310
.
14.
Zhang
,
H.
,
Faghri
,
M.
, and
White
,
J. K.
, 1996, “
A New Low-Reynolds Number k-ε Model for Turbulent Flow Over Smooth and Rough Surfaces
,”
ASME J. Fluids Eng.
0098-2202,
118
, pp.
255
259
.
15.
Rotta
,
J.
, 1962, “
Turbulent Boundary Layers in Incompressible Flows
,”
Prog. Aeronaut. Sci.
0079-6026,
2
, pp.
73
82
.
16.
Blanchard
,
A.
, 1977, “
Analyse Expérimentale et Théorique de la Structure de la Turbulence d’une Couche Limite sur Paroi Rugueuse
,” Ph.D. thesis, Université de Poitiers U.E.R.-E.N.S.M.A.
17.
Aupoix
,
B.
, and
Spalart
,
P. R.
, 2003, “
Extensions of the Spalart–Allmaras Turbulence Model to Account for Wall Roughness
,”
Int. J. Heat Fluid Flow
0142-727X,
24
, pp.
454
462
.
18.
Spalart
,
P. R.
, and
Allmaras
,
S. R.
, 1992, “
A One-Equation Turbulence Model for Aerodynamic Flows
,”
30th Aerospace Sciences Meeting and Exhibit
,
Reno, NV
, AIAA Paper No. 92–0439.
19.
Spalart
,
P. R.
, and
Allmaras
,
S. R.
, 1994, “
A One-Equation Turbulence Model for Aerodynamic Flows
,”
Rech. Aerosp.
0034-1223,
1
, pp.
5
21
.
20.
Dipprey
,
D. F.
, and
Sabersky
,
R. H.
, 1963, “
Heat and Momentum Transfer in Smooth and Rough Tubes at Various Prandtl Numbers
,”
Int. J. Heat Mass Transfer
0017-9310,
6
, pp.
329
353
.
21.
Smith
,
B. R.
, 1990, “
The k-kl Turbulence Model and Wall Layer Model for Compressible Flows
,”
21st Fluid and Plasma Dynamics Conference
,
Seattle, WA
, AIAA Paper No. 90–1483.
22.
Smith
,
B. R.
, 1995, “
Prediction of Hypersonic Shock Wave Turbulent Boundary Layer Interactions with the k-l Two Equation Turbulence Model
,”
33rd Aerospace Sciences Meeting and Exhibit
,
Reno, NV
, AIAA Paper No. 95–0232.
23.
Prasad
,
R. O. S.
, and
Hassan
,
H. A.
, 1998, “
An Evaluation of the Two-Equation k-l Model for Simple Shear Flows
,”
36th Aerospace Science Meeting and Exhibit
,
Reno, NV
, AIAA Paper No. 98–0321.
24.
Ferrey
,
P.
, and
Aupoix
,
B.
, 2006, “
Behaviour of Turbulence Models Near a Turbulent/Non-Turbulent Interface
,”
Int. J. Heat Fluid Flow
0142-727X,
27
(
5
), pp.
831
837
.
25.
Smith
,
B. R.
, 1997, “
A Non-Equilibrium Turbulent Viscosity Function for the k-l Two Equation Turbulence Model
,”
28th AIAA Fluid Dynamics Conference, Fourth Shear Flow Control Conference
,
Snowmass Village, CO
, AIAA Paper No. 97–1959.
26.
Aupoix
,
B.
, 1999, “
Couches Limites Bidimensionnelles Compressibles. Descriptif et Mode d’Emploi du Code CLIC 2
,” DMAE, ONERA, Final Report No. R. F. 1/5620.02-1/5620.05.
27.
Menter
,
F. R.
, 1994, “
Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications
,”
AIAA J.
0001-1452,
32
(
8
), pp.
1598
1605
.
28.
Scaggs
,
W. F.
,
Taylor
,
R. P.
, and
Coleman
,
H. W.
, 1988, “
Measurement and Prediction of Rough Wall Effects on Friction Factor: Uniform Roughness Results
,”
ASME J. Fluids Eng.
0098-2202,
110
, pp.
385
391
.
29.
Taylor
,
R. P.
,
Coleman
,
H. W.
, and
Hodge
,
B. K.
, 1985, “
Prediction of Turbulent Rough-Wall Skin Friction Using a Discrete Element Approach
,”
ASME J. Fluids Eng.
0098-2202,
107
, pp.
251
257
.
30.
Hosni
,
M. H.
,
Coleman
,
H. W.
, and
Taylor
,
R. P.
, 1989, “
Measurements and Calculation of Surface Roughness Effects on Turbulent Flow and Heat Transfer
,” Thermal and Fluid Dynamics Laboratory, Mechanical and Nuclear Engineering Department, Mississippi State University, Technical Report No. TFD-89-1.
31.
Hosni
,
M. H.
,
Coleman
,
H. W.
, and
Taylor
,
R. P.
, 1991, “
Measurements and Calculations of Rough-Wall Heat Transfer in the Turbulent Boundary Layer
,”
Int. J. Heat Mass Transfer
0017-9310
34
(
4/5
), pp.
1067
1082
.
32.
Hosni
,
M. H.
,
Coleman
,
H. W.
,
Gardner
,
J. W.
, and
Taylor
,
R. P.
, 1993, “
Roughness Element Shape Effects on Heat Transfer and Skin Friction in Rough-Wall Turbulent Boundary Layer
,”
Int. J. Heat Mass Transfer
0017-9310,
36
(
1
), pp.
147
153
.
33.
Chakroun
,
W.
, 1992, “
Experimental Investigation of the Effects of Acceleration on Flow and Heat Transfer in the Turbulent Rough-Wall Boundary Layer
,” Ph.D. thesis, Mississippi State University.
34.
Chakroum
,
W.
, and
Taylor
,
R. P.
, 1993, “
Heat Transfer and Fluid Dynamics Measurements in Accelerated Rough-Wall Boundary Layer
,”
ASME International Gas Turbine and Aeroengine Congress and Exposition
,
Cincinnati, OH
.
35.
Acharya
,
M.
,
Bornstein
,
J.
, and
Escudier
,
M. P.
, 1986, “
Turbulent Boundary Layers on Rough Surfaces
,”
Exp. Fluids
0723-4864,
4
(
1
), pp.
33
47
.
36.
Tarada
,
F. H. A.
, 1987, “
Heat Transfer to Rough Turbine Blading
,” Ph.D. thesis, University of Sussex.
You do not currently have access to this content.