Time-mean flow fields and turbulent flow characteristics obtained from solving the Reynolds averaged Navier-Stokes equations with a kε turbulence model are used to predict the frequency spectrum of wall pressure fluctuations. The vertical turbulent velocity is represented by the turbulent kinetic energy contained in the local flow. An anisotropic distribution of the turbulent kinetic energy is implemented based on an equilibrium turbulent shear flow, which assumes flow with a zero streamwise pressure gradient. The spectral correlation model for predicting the wall pressure fluctuation is obtained through a Green’s function formulation and modeling of the streamwise and spanwise wave number spectra. Predictions for equilibrium flow agree well with measurements and demonstrate that when outer-flow and inner-flow activity contribute significantly, an overlap region exists in which the pressure spectrum scales as the inverse of frequency. Predictions of the surface pressure spectrum for flow over a backward-facing step are used to validate the current approach for a nonequilibrium flow.

1.
Willmarth
,
W. W.
, and
Wooldridge
,
C. E.
, 1962, “
Measurements of the Fluctuating Pressure at the Wall Beneath a Thick Turbulent Boundary Layer
,”
J. Fluid Mech.
0022-1120,
14
, pp.
187
210
.
2.
Corcos
,
G. M.
, 1964, “
The Structure of the Turbulent Pressure Field in Boundary-Layer Flows
,”
J. Fluid Mech.
0022-1120,
18
, pp.
353
378
.
3.
Blake
,
W. K.
, 1970, “
Turbulent Boundary-Layer Wall-Pressure Fluctuations on Smooth and Rough Walls
,”
J. Fluid Mech.
0022-1120,
44
, pp.
637
660
.
4.
Blake
,
W. K.
, 1986,
Mechanics of Flow-Induced Sound and Vibration
,
Academic Press
, San Diego.
5.
Olivero-Bally
,
P.
,
Forestier
,
B.
,
Focquenoy
,
E.
, and
Olivero
,
P.
, 1993, “
Wall-Pressure Fluctuations in Natural and Manipulated Turbulent Boundary Layers in Air and Water
,”
ASME Proc. of Flow Noise Modeling, Measurement, and Control
,
ASME
, New York, FED-Vol.
168
, pp.
63
74
.
6.
Abraham
,
B. M.
, and
Keith
,
W. L.
, 1998, “
Direct Measurements of Turbulent Boundary Layer Wall Pressure Wavenumber-Frequency Spectra
,”
ASME J. Fluids Eng.
0098-2202,
120
, pp.
29
39
.
7.
Lilley
,
G. M.
, and
Hodgson
,
T. H.
, 1960, “
On Surface Pressure Fluctuations in Turbulent Boundary Layers
,” AGARD Report No. 276.
8.
Landahl
,
M. T.
, 1967, “
A Wave-Guide Model for Turbulent Shear Flow
,”
J. Fluid Mech.
0022-1120,
29
, pp.
441
459
.
9.
Panton
,
R. L.
, and
Linebarger
,
J. H.
, 1974, “
Wall Pressure Spectra Calculations for Equilibrium Boundary Layers
,”
J. Fluid Mech.
0022-1120,
65
, pp.
261
287
.
10.
Chase
,
D. M.
, 1980, “
Modeling the Wavevector-Frequency Spectrum of Turbulent Boundary Wall Pressure
,”
J. Sound Vib.
0022-460X,
70
, Part 1, pp.
29
67
.
11.
Blake
,
W. K.
,
Lee
,
Y. T.
, and
Zawadzki
,
I.
, 1998, “
Evolving Design Tools for Predicting Aeroacoustics of Rotating Machinery
,”
Proc. of FEDSM’98, 1998 ASME Fluids Engineering Division Summer Meeting
, Washington DC,
ASME
, New York, FEDSM98–4874.
12.
Smol’yakov
,
A. V.
, 2001, “
Noise of a Turbulent Boundary Layer Flow over Smooth and Rough Plates at Low Mach Numbers
,”
Acoust. Phys.
1063-7710,
47
(
2
), pp.
218
225
.
13.
Farabee
,
T. M.
, and
Casarella
,
M. J.
, 1984, “
Effects of Surface Irregularity on Turbulent Boundary Layer Wall Pressure Fluctuations
,”
ASME J. Vib., Acoust., Stress, Reliab. Des.
0739-3717,
106
, pp.
343
350
.
14.
Farabee
,
T. M.
, and
Casarella
,
M. J.
, 1986, “
Measurements of Fluctuating Wall Pressure for Separated∕Reattached Boundary Layer Flows
,”
ASME J. Vib., Acoust., Stress, Reliab. Des.
0739-3717,
108
, pp.
301
307
.
15.
Simpson
,
R. L.
,
Chodbane
,
M.
, and
McGrath
,
B. E.
, 1987, “
Surface Pressure Fluctuations in a Separating Turbulent Boundary Layer
,”
J. Fluid Mech.
0022-1120,
177
, pp.
167
186
.
16.
Brooks
,
T. F.
, and
Humphreys
,
W. M.
, 2000, “
Flap Edge Aeroacoustic Measurements and Predictions
,” AIAA Paper 2000–1975, June.
17.
Guo
,
Y. P.
,
Joshi
,
M. C.
,
Bent
,
P. H.
, and
Yamamoto
, 2000, “
Surface Pressure Fluctuations on Aircraft Flaps and Their Correlation With Far-Field Noise
,”
J. Fluid Mech.
0022-1120,
415
, pp.
175
202
.
18.
Taylor
,
L. K.
,
Arabshahi
,
A.
, and
Whitfield
,
D. L.
, 1995, “
Unsteady Three-Dimensional Incompressible Navier-Stokes Computations for a Prolate Spheroid Undergoing Time-Dependent Maneuvers
,” AIAA Paper No. 95–0313, Jan.
19.
Chakravarthy
,
S.
,
Goldberg
,
U. C.
,
Peroomian
,
O.
, and
Sekar
,
B.
, 1997, “
Some Algorithmic Issues in Viscous Flows Explored Using a Unified-Grid CFD Methodology
,” AIAA Paper No. 97–1944.
20.
Hodgson
,
T. H.
, 1962, “
Pressure Fluctuations in Shear Flow Turbulence
,” Ph.D. thesis, University of London.
21.
Chang
,
P. A.
, 1998, “
Relationships Between Wall Pressure and Velocity Field Sources
,” Ph.D. thesis, University of Maryland.
22.
Kraichnan
,
R. H.
, 1956, “
Pressure Fluctuations in Turbulent Flow over a Flat Plate
,”
J. Acoust. Soc. Am.
0001-4966,
28
(
3
), pp.
378
390
.
23.
Farabee
,
T. M.
, 1986, “
An Experimental Investigation of Wall Pressure Fluctuations beneath Non-equilibrium Turbulent Flows
,” Ph.D. thesis, Catholic University of America.
24.
Hinze
,
J.
, 1975,
Turbulence
, 2nd Edition,
McGraw-Hill
, New York, pp.
638
656
.
25.
Farabee
,
T. M.
, and
Casarella
,
M. J.
, 1991, “
Spectral Features of Wall Pressure Fluctuations Beneath Turbulent Boundary Layers
,”
Phys. Fluids
0031-9171,
3
(
10
),
2410
2420
.
26.
Goody
,
M. C.
, 1999, “
An Experimental Investigation of Pressure Fluctuations in Three-Dimensional Turbulent Boundary Layers
,” Ph.D. thesis, Department of Aero. and Ocean Engineering, Virginia Tech.
27.
Goldberg
,
U. C.
, 1991, “
Derivation and Testing of a One-Equation Model Based on Two Time Scales
,”
AIAA J.
0001-1452,
29
(
8
), pp.
1337
1340
.
You do not currently have access to this content.