Turbulent flow field was modeled based on experimental flow visualization and radial-basis neural networks. Turbulent fluctuations were modeled based on the recorded concentration at various locations in the Karman vortex street, which were used as inputs and outputs of the neural network. From the measured and the modeled concentration the power spectra and spatial correlation functions were calculated. The measured and the modeled concentration power spectra correspond well to the −5/3 turbulence decay law, and exhibit the basic spectral peak of fluctuation power at the same frequency. The predicted and measured correlation functions of concentration exhibit similar behavior.

1.
Faller
,
W. E.
, and
Schreck
,
S. J.
,
1995
, “
Real Time Prediction of Unsteady Aerodynamics, Application for Aircraft Control and Maneuverability Enhancement
,”
IEEE Trans. Neural Netw.
,
6
(
6
), pp.
1461
1468
.
2.
Faller
,
W. E.
, and
Schreck
,
S. J.
,
1996
, “
Neural Networks: Applications and Opportunities in Aeronautics
,”
Prog. Aerosp. Sci.
,
32
(
5
), pp.
433
456
.
3.
Jacobson
,
S. A.
, and
Reynolds
,
W. C.
,
1998
, “
Active Control of Streamwise Vortices and Streaks in Boundary Layers
,”
J. Fluid Mech.
,
360
, pp.
179
211
.
4.
Jambunathan
,
K.
,
Fontama
,
V. N.
,
Hartle
,
S. L.
, and
Ashford-Frost
,
S.
,
1997
, “
Using ART2 Networks to Deduce Flow Velocities
,”
Artif. Intell. Eng.
,
11
, pp.
135
141
.
5.
Grant
,
I.
, and
Pan
,
X.
,
1997
, “
The Use of Neural Techniques in PIV and PTV
,”
Meas. Sci. Technol.
,
8
, pp.
1399
1405
.
6.
Kimura, I., Hattori, A., Kuroe, Y., and Kaga, A., 1998, “Estimation of Flow Velocity Vector Fields Using Neural Networks,” 8th International Symposium on Flow Visualization, Sorrento, pp. 151.1–151.7.
7.
Dibike
,
Y. B.
,
Minns
,
A. W.
, and
Abbot
,
M. B.
,
1999
, “
Applications of Artificial Neural Networks to the Generation of Wave Equations from Hydraulic Data
,”
J. Hydraul. Res.
,
37
(
1
), pp.
81
97
.
8.
Blackwelder R., 1995, “A Preliminary Attempt to Use Neural Networks for Turbulent Eddy Classification,” Anual Research Briefs, Center for turbulence research, Stanford University.
9.
Ferre-Gine
,
J.
,
Rallo
,
R.
,
Arenas
,
A.
, and
Giralt
,
F.
,
1997
, “
Extraction of Structures from Turbulent Signals
,”
Artif. Intell. Eng.
,
11
(
4
), pp.
413
419
.
10.
Delgado, A., Benning, R., and Becker, T., 1998, “On the Use of ANN in the Prediction of the Flow Fields,” EUFIT 98, pp. 7–10.
11.
Zhang
,
L.
,
Akiyama
,
M.
,
Sugiyama
,
H.
, and
Ninomiya
,
N.
,
1997
, “
Application of Structured Artificial Neural Networks to Computational Fluid Dynamical Problems
,”
Japanese Journal of Fuzzy Theory and Systems
,
9
, pp.
511
520
.
12.
Giralt
,
F.
,
Arenas
,
A.
,
Ferre-Gine
,
J.
,
Rallo
,
R.
, and
Kopp
,
G. A.
,
2000
, “
The Simulation and Interpretation of Free Turbulence with a Cognitive Neural System
,”
Phys. Fluids
,
12
(
7
), pp.
1862
1869
.
13.
Rediniotis
,
O. K.
, and
Chrisanthakopoulos
,
G.
,
1998
, “
A Wide-Range, High-Accuracy Neural/Fuzzy Calibration Technique for Flow-Diagnostics Instrumentation
,”
ASME J. Fluids Eng.
,
120, 1
, pp.
95
101
.
14.
Fan
,
H. Y.
,
Lu
,
W. Z.
,
Xi
,
G.
, and
Wang
,
S. J.
,
2003
, “
A New Neural-Network-Based Calibration Method for Aerodynamic Pressure Probes
,”
ASME J. Fluids Eng.
,
125, 1
, pp.
113
120
.
15.
Gad-el-Hak
,
M.
,
1996
, “
Modern Developments in Flow Control
,”
Appl. Mech. Rev.
,
49
, pp.
365
379
.
16.
Lee
,
C.
,
Kim
,
J.
,
Babcock
,
D.
, and
Goodman
,
R.
,
1997
, “
Application of Neural Networks to Turbulence Control for Drag Reduction
,”
Phys. Fluids
,
9
(
6
), pp.
1740
1747
.
17.
Gillies
,
E. A.
,
1998
, “
Low Dimensional Control of the Circular Cylinder Wake
,”
J. Fluid Mech.
,
371
, pp.
157
180
.
18.
McComb, W. D., 1996, The Physics of Fluid Turbulence, Clarendon Press, Oxford, UK.
19.
Batchelor, G. K., 1971, The Theory of Homogeneous Turbulence, Cambridge University Press, Cambridge, UK.
20.
Hinze, J. O., 1975, Turbulence: An introduction to its mechanism and theory, second edition, McGraw-Hill book company, New York, USA.
21.
Grabec, I., and Sachse, W., 1997, Synergetics of Measurement, Prediction and Control, Springer, Berlin, Germany.
22.
Simon
,
D.
,
2002
, “
Training Radial Basis Neural Networks with the Extended Kalman Filter
,”
Neurocomputing
,
48
, pp.
455
475
.
23.
Kim
,
H. S.
, and
Lee
,
J. Y.
,
2002
, “
Image Coding by Fitting RBF-Surfaces to Subimages
,”
Pattern Recogn. Lett.
,
23
, pp.
1239
1251
.
24.
Orr, M., 1999, “Matlab Functions for Radial Basis Function Networks,” http://www.anc.ed.ac.uk/∼mjo/software/rbf2.zip
25.
Gerdes
,
F.
, and
Olivari
,
D.
,
1999
, “
Analysis of Pollutant Dispersion in an Urban Street Canyon
,”
Eng. Educ.
,
81
(
1
), pp.
105
124
.
26.
Simoens
,
S.
, and
Ayrault
,
M.
,
1994
, “
Concentration Flux Measurements of a Scalar Quantity in Turbulent Flows
,”
Exp. Fluids
,
16
, pp.
273
28
.
27.
Aider, J. L., Westfried, and J. E., 1995, “Visualization and PDF of the Fluctuations of a Passive Scalar in a Turbulent Go¨rtler Flow,” FED, Experimental and numerical flow visualization, ASME 218, pp. 123–130.
28.
Grisch
,
F.
, and
Bresson
,
A.
,
2001
, “
Radical Imaging and Temperature Mapping in Turbulent Gaseous Flowfields
,”
C. R. Acad. Sci., Ser IV: Phys., Astrophys.
,
2
(
7
), pp.
1037
1047
.
29.
Chatzipanagiotidis
,
A.
, and
Olivari
,
D.
,
1996
, “
Pollutant Dispersal Downstream of a Hill in Different Wind Conditions
,”
J. Wind. Eng. Ind. Aerodyn.
,
64
(
2-3
), pp.
233
248
.
30.
Law
,
A. W. K.
, and
Wang
,
H.
,
2000
, “
Measurement of Mixing Processes with Combined Digital Particle Image Velocimetry and Planar Laser Induced Fluorescence
,”
Exp. Therm. Fluid Sci.
,
22
, pp.
213
229
.
31.
Balu
,
M.
,
Balachandar
,
R.
, and
Wood
,
H.
,
2001
, “
Concentration Estimation in Two-Dimensional Bluff Body Wakes Using Image Processing and Neural Networks
,”
J. Fluids Struct.
,
8
(
2-3
), pp.
121
140
.
32.
Urner, P., 1980, Beitrag zum Einfluß der Stro¨mung auf das Meßsignal bei der Wirbelfrequenz-Durchflußmessung, Ph.D. Thesis, TU Dresden, Fakulta¨t fu¨r Maschinenwesen.
33.
Anagnostopoulos
,
P.
,
1997
, “
Computer Aided Flow Visualization and Vorticity Balance in the Laminar Wake of a Circular Cylinder
,”
J. Fluids Struct.
,
11
, pp.
33
72
.
34.
Landau, L. D., and Lifshitz, E. M., 1987, Fluid Mechanics, Pergamon, Oxford, UK.
35.
Keles
,
R. S.
,
2000
, “
Active Control of Transition to Turbulence in the Wake of a Cylinder
,”
J. Aircr.
,
3
, pp.
1
15
.
36.
Spalart
,
P. R.
,
2000
, “
Strategies for Turbulence Modelling and Simulations
,”
Int. J. Heat Fluid Flow
,
21
, pp.
252
263
.
37.
Grabec
,
I.
,
2001
, “
Experimental Modeling of Physical Laws
,”
Eur. Phys. J. B
,
22
, pp.
129
135
.
You do not currently have access to this content.